Lời giải:
Áp dụng BĐT Bunhiacopxky và Cauchy ngược dấu ta có:
\((m\sqrt{123-n^2}+n\sqrt{123-m^2})^2\leq (m^2+n^2)(123-n^2+123-m^2)\leq \left(\frac{m^2+n^2+123-n^2+123-m^2}{2}\right)^2\)
\(\Leftrightarrow (m\sqrt{123-n^2}+n\sqrt{123-m^2})^2\leq 123^2\)
\(\Rightarrow m\sqrt{123-n^2}+n\sqrt{123-m^2}\leq 123\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix} \frac{m}{\sqrt{123-n^2}}=\frac{n}{\sqrt{123-m^2}}\\ m^2+n^2=123-n^2+123-m^2(1)\end{matrix}\right.\)
Từ (1) \(\Rightarrow m^2+n^2=123\)