Cho hàm số f(x) xác định và liên tục trên [0;1], thỏa mãn f'(x)=f'(1-x) với mọi x thuộc [0;1]. Biết rằng f(0)=1; f(1)=41. Tính tích phân I=\(\int_0^1f\left(x\right)dx\)
cho f(x) dương liên tục trên [0;1] f(0)=1. Biết \(3\int_0^1\left[f'\left(x\right)\left[f\left(x\right)\right]^2+\frac{1}{9}\right]dx\le2\int_0^1\sqrt{f'\left(x\right)}f\left(x\right)dx\) . Tính \(\int_0^1\left[f\left(x\right)\right]^3dx\)
Câu 1. Cho hàm số chẵn y=f (x) liên tục trên R và \(\int\limits^1_{-1}\dfrac{f\left(2x\right)}{1+2^x}dx=8\).Tính \(\int_0^2f\left(x\right)dx\)
Câu 2:Cho hàm số y=f (x) có đạo hàm và liên tục trên [0;1]và thỏa f(0)=1.\(\int_0^1\left[f'\left(x\right)\left[f^2\left(x\right)\right]+1\right]dx=2\int_0^1\sqrt{f'\left(x\right)}f\left(x\right)dx\).Tính\(\int_0^1\left[f^3\left(x\right)\right]dx\).
cho hàm số y=f(x) liên tục trên [0;π/2] thỏa \(\int_0^{\frac{\pi}{2}}f^2\left(x\right)dx=3\pi\) , \(\int_0^{\pi}\left(\sin x-x\right)f'\left(\frac{x}{2}\right)dx=6\pi\) ; \(f\left(\frac{\pi}{2}\right)=0\) Tính \(\int_0^{\frac{\pi}{2}}\left(f''\left(x\right)\right)^3dx\)
giúp em với ạ.
40/HT
Cho hàm số f(x) có f(0) = 0 và f'(x) = sin4x. Tính tích phân \(\int_0^{\frac{\pi}{2}}f\left(x\right)dx\)
Cho hàm số \(y=f\left(x\right)\) liên tục trên đoạn \(\left[-1;3\right]\) thoả mãn \(\int\limits^1_0f\left(x\right)dx=3\) và \(\int\limits^3_1f\left(x\right)dx=6\) . Tính \(\int\limits^3_{-1}f\left(\left|x\right|\right)dx\)
1) Cho hàm số f(x) liên tục trên R+ thỏa mãn f '(x) \(\ge x+\dfrac{1}{x},\forall x\in R^+\) và f(1) = 1. CM : \(f\left(2\right)\ge\dfrac{5}{2}+ln2\).
2) Cho hàm số y = f(x) > 0 xác định, có đạo hàm trên đoạn [0; 1] và thỏa mãn : \(g\left(x\right)=1+2018\int\limits^x_0f\left(t\right)dt\) , g(x) = f2 (x). Tính \(\int\limits^1_0\sqrt{g\left(x\right)}dx\).
3) Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0; 1] thỏa mãn f(1) = 1; \(\int\limits^1_0\left[f'\left(x\right)\right]^2dx=9\) và \(\int\limits^1_0x^3f\left(x\right)dx=\dfrac{1}{2}\). Tính tích phân \(\int\limits^1_0f\left(x\right)dx\).
Gọi F(x) là nguyên hàm của \(f\left(x\right)=2x+\sqrt{x}\), có \(F\left(0\right)=0\). Tính \(\int\limits^1_0F\left(x\right).f\left(.\right)+f’\left(x+1\right)dx\)
Cho \(f\left(x\right)\) liên tục trên R và thoả mản \(2x+f\left(2x\right)+f’\left(x\right)=f\left(f\left(x\right)\right)+f\left(x^{-1}\right)+f\left(x\right)\), \(\int\limits^2_1f\left(x\right)dx=3\), \(f\left(0\right)=0\) và \(f\left(3\right)=6\). Tính \(f\left(2\right)+f\left(1\right)\) bằng:
a) 3
b) 4
c) 6
d) Đáp án khác