\(\frac{x-2}{71}+\frac{x-4}{69}=\frac{x-6}{67}+\frac{x-8}{65}\)
\(\Leftrightarrow\frac{x-2}{71}-1+\frac{x-4}{69}-1=\frac{x-6}{67}-1+\frac{x-8}{65}-1\)
\(\Leftrightarrow\frac{x-73}{71}+\frac{x-73}{69}=\frac{x-73}{67}+\frac{x-73}{65}\)
\(\Leftrightarrow\frac{x-73}{71}+\frac{x-73}{69}-\frac{x-73}{67}-\frac{x-73}{65}=0\)
\(\Leftrightarrow\left(x-73\right)\left(\frac{1}{71}+\frac{1}{69}-\frac{1}{67}-\frac{1}{65}\right)=0\)
Mà \(\frac{1}{71}+\frac{1}{69}-\frac{1}{67}-\frac{1}{65}\ne0\)
\(x-73=0\Leftrightarrow x=73\)
\(\frac{x-2}{71}-1+\frac{x-4}{69}-1=\frac{x-6}{67}-1+\frac{x-8}{65}-1\)
\(\Leftrightarrow\frac{x-73}{71}+\frac{x-73}{69}=\frac{x-73}{67}+\frac{x-73}{65}\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{71}+\frac{1}{69}-\frac{1}{67}-\frac{1}{65}\right)=0\)
\(\Rightarrow...\)
Ta có: \(\frac{x-2}{71}+\frac{x-4}{69}=\frac{x-6}{67}+\frac{x-8}{65}\)
\(\frac{x-2}{71}+\frac{x-4}{69}-2=\frac{x-6}{67}+\frac{x-8}{65}\)
\(\frac{x-2}{71}-1+\frac{x-4}{69}-1=\frac{x-6}{67}-1+\frac{x-8}{65}-1=0\)
\(\frac{x-73}{71}+\frac{x-73}{69}-\frac{x-6}{67}-\frac{x-8}{65}=0\)
\(\left(x-73\right)\left(\frac{1}{71}+\frac{1}{69}-\frac{1}{67}-\frac{1}{65}\right)=0\)
\(\left(\frac{1}{71}+\frac{1}{69}-\frac{1}{67}-\frac{1}{65}\right)\ne0\)
=> x - 73 = 0 <=> x = 73
Vậy x = 73.