Cho \(P=\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right):\left(1-\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\) với \(x,y\ge0;xy\ne1\)
Rút gọn P
Cho \(A=\left(2-\frac{2\sqrt{xy}+1}{\sqrt{xy}+1}+\frac{1}{1-\sqrt{xy}}+\frac{2\sqrt{x}}{1-xy}\right):\left(\frac{\sqrt{xy}-\sqrt{x}}{\sqrt{xy}+1}-\frac{\sqrt{xy+\sqrt{x}}}{\sqrt{xy}-1}\right)\)
a, Cho \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=12\) Chứng minh \(A\le36\) b, Cho \(x^2+9y^2=18\) . Tính GTNN của A
P= (\(\frac{\sqrt{x}+1}{\sqrt{xy}+1}\)+\(\frac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}\)+1):(1-\(\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\))
a. rút gọn
b. cho \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\)=6. Tìm GTLN của bieeyur thức P
Giải HPT:
\(\left\{{}\begin{matrix}\frac{1}{\sqrt{x^2+1}}+\frac{1}{\sqrt{y^2+1}}=\frac{2}{\sqrt{xy+1}}\\x+\frac{y\sqrt{3}}{\sqrt{xy-3}}=2\sqrt{6}\end{matrix}\right.\)
\(\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{xy}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(x-y\right)\left(\sqrt{x^3}-x\right)}\)
các bạn giúp mình với mình cảm ơn nhiều
\(D=\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-1\right)\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}-\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}+1\right)\)
Rút gọn D
giải hệ phương trình: \(\left\{{}\begin{matrix}\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}=\frac{7}{\sqrt{xy}}+1\\\sqrt{x^3y}+\sqrt{xy^3}=78\end{matrix}\right.\)
Cho biểu thức: \(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]\) \(:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\) \(\left(x>0,y>0\right)\)
a, Rút gọn A
b,Biết \(xy=16\) . Tìm các giá trị của xy để A có GTNN. Tìm GTNN đó.
x+2y+3z=2,tìm max của \(s=\sqrt{\frac{xy}{xy+3z}}+\sqrt{\frac{3yz}{3yz+x}}+\sqrt{\frac{3xz}{3xz+4y}}\)( GIẢI CHI TIẾT HỘ MÌNH VỚI,MÌNH CẢM ƠN.ĐỪNG GHI TẮT THEO SIGMA MÀ,MÌNH TRA GG KHÔNG HIỂU :((()