Tìm GTLN:
a. A=\(\frac{2020}{\left(x+3\right)^2+\left|y+1\right|+5}\)
b. B= -x2 - 2x +8
c. C= \(\frac{x^2-2x+2020}{x^2-2x+2020}\)
Tính giá trị biểu thức:
M\(=\dfrac{x^2\left(x^2+2y\right)\left(x^2-2y\right)\left(x^4+2y^4\right)\left(x^8+2y^8\right)}{x^{16}+2y^{16}^{ }}\)
với x=4 và y=8
Giúp e vs m.n ơi!!!!
1. tính GTBT:
\(B=\frac{2}{3}x^2y\left(2x^2-\frac{y}{3}\right)-2x^2\left(2x^2-1\right)+\left(2x^2-\frac{y}{3}\right).2x\)
2.tính:
\(P=3x^n\left(4x^{n+1}-1\right)-2x^{n+1}\left(6x^{n-2}-1\right)\)
\(Q=\left(x^{2n}+x^ny^n+y^{2n}\right).x^n.y^n\)
1.Rút gọn các đơn thức sau và chỉ bra hệ số và phần biến
a)\(-2x^2y.\left(-xy^2\right)\)
b)\(\frac{1}{4}\left(x^2y^3\right)^2.\left(-2xy\right)\)
2.Tính các tích sau rồi tìm bậc của công thức thu được
a)\(\left(-7x^2yz\right).\frac{3}{7}xy^2z^3\)
b)\(-\frac{2}{3}xy^2z.\left(-3x^2y\right)^2\)
c)\(x^2yz.\left(2xy\right)^2z\)
d)\(-\frac{1}{3}x^2y.\left(-x^3yz\right)\)
3.Thực hiện phép nhân các đơn thức sau rồi tìm bậc đơn thức nhận được
a)\(4x^2y.\left(-5xy^4\right)\)
b)\(\frac{-1}{2}x^3y.\left(-xy\right)\)
c)\(\left(-2x^3y\right).3xy^4\)
d)\(\frac{-4}{5}x^3y.\left(-xy\right)\)
e)\(\frac{2}{3}xyz.\left(-6x^2y\right).\left(-xy^2z\right)\)
f)\(\left(-2x^2y\right).\left(\frac{-1}{2}\right)^2.\left(x^2y^3\right)^2\)
➤ Bài 1 : Cho đa thức :
\(f\left(x\right)=x\left(\frac{x^{2013}}{3}-\frac{x^{2014}}{5}+\frac{x^{2015}}{7}+\frac{x^2}{2}\right)-\left(\frac{x^{2014}}{3}-\frac{x^{2015}}{5}+\frac{x^{2016}}{7}+\frac{x^2}{2}\right)\).
a/ Tìm bậc của đa thức f(x).
b/ Chứng minh : Đa thức f(x) luôn nhận giá trị nguyên với \(\forall x\)\(\in \mathbb{Z}\)
➤ Bài 2 : Cho 3 số ɑ, b, c thoả mãn :
\(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}\)
Tính \(M=4\left(a-b\right)\left(b-c\right)\left(c-a\right)^2\).
thu gọn rồi xác định hệ số, phần biến và bậc cua don thức
\(x\cdot\left(\frac{-5}{2}y\right)\left(\frac{-1}{3}x^3\right)^2\)
1, Cho hai đa thức :
\(f\left(x\right)=\left(x-1\right)\left(x+2\right)\\ g\left(x\right)=x^3+ax^2+bx^2+2\)
Xác định a và biết nghiệm của đa thức f(x) và nghiệm của của đa thức g(x) bằng nhau.
2, CMR : Đa thức P(x) có ít nhất 2 nghiệm. Biết :
\(\left(x-6\right)\cdot P\left(x\right)=\left(x+1\right)\cdot P\left(x-4\right)\)
3, Cho đơn thức bậc hai \(\left[P\left(x\right)=ax^2+bx+c\right]Biết:P\left(1\right)=P\left(-1\right)\\ CMR:P\left(x\right)=P\left(-3\right)\)
4, CMR: Nếu a + b +c = 0 thì đa thức
\(A\left(x\right)=ax^2+bx+c\) có một trong các ngiệm là 1.
Bài 1: Cho đa thức: \(f\left(x\right)=x^2+4x-5\)
1. Số -5 có phải là nghiệm của \(f\left(x\right)\) không?
Bài 2: Thu gọn rồi tìm nghiệm của các đa thức sau:
1. \(f\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+4\right)\)
2. \(g\left(x\right)=x\left(x-5\right)-x\left(x+2\right)+7x\)
3. \(h\left(x\right)=x\left(x-1\right)+1\)
Câu 1: Xác định hệ số a, b của đa thức \(f\left(x\right)=ax+b\) biết \(f\left(1\right)=1\) và \(f\left(-1\right)=-5\).
Câu 2: Cho hai đa thức: \(A\left(x\right)=x^5+2x^2-\dfrac{1}{2}x-3\)
\(B\left(x\right)=-x^5-3x^2+\dfrac{1}{2}x+1\)
CMR \(M\left(x\right)=A\left(x\right)+B\left(x\right)\)vô nghiệm.