Cho các số dương a, b, c thỏa mãn ab+bc+ca=1.
CMR: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge3+\sqrt{\frac{\left(a+b\right)\left(a+c\right)}{a^2}}+\sqrt{\frac{\left(b+c\right)\left(b+a\right)}{b^2}}+\sqrt{\frac{\left(c+a\right)\left(c+b\right)}{c^2}}\)
1. a) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\)
b) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)
c) \(x,y,z>0.\) Min \(P=\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}+\sqrt{\frac{y^3}{y^3+\left(z+x\right)^3}}+\sqrt{\frac{z^3}{z^3+\left(x+y\right)^3}}\)
d) \(a,b,c>0;a^2+b^2+c^2+abc=4.Cmr:2a+b+c\le\frac{9}{2}\)
e) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\). Cmr: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ca}\ge\frac{3}{2}\)
f) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=4\end{matrix}\right.\) Cmr: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le3\)
g) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=2\end{matrix}\right.\) Max : \(Q=\frac{a+1}{a^2+2a+2}+\frac{b+1}{b^2+2b+2}+\frac{c+1}{c^2+2c+2}\)
1. \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=1\end{matrix}\right.\). Cmr: \(\frac{ab}{\sqrt{\left(1-c\right)^2\left(1+c\right)}}+\frac{bc}{\sqrt{\left(1-a\right)^2\left(1+a\right)}}+\frac{ca}{\sqrt{\left(1-b\right)^3\left(1+b\right)}}\le\frac{3\sqrt{2}}{8}\)
2. \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c\le1\end{matrix}\right.\). Cmr: \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ac\left(a+c\right)}\ge\frac{87}{2}\)
3. \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca=2abc\end{matrix}\right.\). Cmr: \(\frac{1}{a\left(2a-1\right)^2}+\frac{1}{b\left(2b-1\right)^2}+\frac{1}{c\left(2c-1\right)^2}\ge\frac{1}{2}\)
4. \(\left\{{}\begin{matrix}x,y,z>0\\x+y+z=2015\end{matrix}\right.\). Tìm min \(A=\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^2+x^2}\)
Mn giúp mk với ạ! Thanks nhiều
Bài 1: Cho các số a, b, c > 0 sao cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\). Tìm GTNN của Q = \(\sqrt{\frac{ab}{\left(a+bc\right)\left(b+ca\right)}}+\sqrt{\frac{bc}{\left(b+ca\right)\left(c+ab\right)}}+\sqrt{\frac{ca}{\left(c+ab\right)\left(a+bc\right)}}\)
Bài 2: Cho các số a, b, c > 0 sao cho \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\) .
a) CMR: \(\frac{1}{a^3}+\frac{1}{b^3}\ge\frac{16}{\left(a+b\right)^3}\)
b) Tìm GTLN của: P = \(\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(a+2b+c\right)^2}+\frac{1}{\left(a+b+2c\right)^2}\)
Bài 3: Cho tam giác ABC nhọn nội tiếp (O). Gọi H là trực tâm tam giác. Chứng minh góc HAB = góc OAC.
Ai nhanh và đúng, mình sẽ đánh dấu và thêm bạn bè nhé. Thanks. Làm ơn giúp mình !!! PLEASE!!!
cho a,b,c là 3 số thực dương thỏa mãn abc=1. Tìm GTLN của biểu thức
\(P=\frac{1}{a\left(a+bc\right)+2b\left(b+ac\right)}+\frac{1}{b\left(b+ac\right)+2c\left(c+ab\right)}+\frac{1}{c\left(c+ab\right)+2a\left(a+bc\right)}\)
cho a,b,c là các số thực dương thỏa ab+bc+ca=1.cmr
\(\left(1-a^2\right)\sqrt{\frac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+\left(1-b^2\right)\sqrt{\frac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}=2c\left(1+ab\right)\)
Cho các số thực dương a,b, c. Tìm GTNN của biểu thức
\(P=\frac{a}{\sqrt[3]{a}+\sqrt[3]{bc}}+\frac{b}{\sqrt[3]{b}+\sqrt[3]{ca}}+\frac{c}{\sqrt[3]{c}+\sqrt[3]{ab}}+\frac{9\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}{4\left(a+b+c\right)}\)
1. cho a,b,c>0. Cmr: a) \(S=\frac{3\left(a^4+b^4+c^4\right)}{\left(a^2+b^2+c^2\right)}+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge2\)
b) \(\frac{a^3+b^3+c^3}{abc}+\frac{9\left(ab+bc+ca\right)}{a^2+b^2+c^2}\ge12\)
1. cho \(0< a\le b\le c\) . Cmr: \(\frac{2a^2}{b^2+c^2}+\frac{2b^2}{c^2+a^2}+\frac{2c^2}{a^2+b^2}\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
2. cho \(a,b,c\ge0\). cmr: \(a^2+b^2+c^2+3\sqrt[3]{\left(abc\right)^2}\ge2\left(ab+bc+ca\right)\)
3. \(a,b,c>0.\) Cmr: \(\sqrt{\left(a^2b+b^2c+c^2a\right)\left(ab^2+bc^2+ca^2\right)}\ge abc+\sqrt[3]{\left(a^3+abc\right)\left(b^3+abc\right)\left(c^3+abc\right)}\)
4. \(a,b,c>0\). Tìm Min \(P=\left(\frac{a}{a+b}\right)^4+\left(\frac{b}{b+c}\right)^4+\left(\frac{c}{c+a}\right)^4\)