\(\left(\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\right).\frac{x-4}{4}=\frac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\frac{x-4}{4}=\frac{4}{x-4}.\frac{x-4}{4}=1\)
\(\left(\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\right).\frac{x-4}{4}=\frac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\frac{x-4}{4}=\frac{4}{x-4}.\frac{x-4}{4}=1\)
BÀI 1: RÚT GỌN
1)\(\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-1}\)
2)\(\sqrt{7+2\sqrt{10}}+2\sqrt{\frac{1}{5}}-\frac{1}{\sqrt{5}-2}\)
3)\(\frac{3}{\sqrt{3}-1}+\sqrt{\frac{4}{3}}-\sqrt{8+2\sqrt{5}}\)
4)\(3\sqrt{\frac{16x}{81}}+\frac{5}{4}\sqrt{\frac{4x}{25}}-\frac{2}{x}\sqrt{\frac{9a^3}{4}}\)
5)\(\frac{1}{3}\sqrt{3a}-\frac{2}{3}\sqrt{\frac{27a}{4}}+\frac{5}{a}\sqrt{\frac{12a^3}{5}}\)
BÀI 2: GIẢI PHƯƠNG TRÌNH
\(1)\sqrt{5x-1}=\sqrt{2}-1\\ 2)\sqrt{1-2x}=\sqrt{3}-1\\ 3)4\sqrt{x}-2\sqrt{9x}+\sqrt{16x}=20\\ 4)\frac{3}{5}\sqrt{\frac{25x-75}{16}}-\frac{1}{14}\sqrt{49x-147}=20\\ 5)\frac{1}{2}\sqrt{x-2}-4\sqrt{\frac{4x-8}{9}}+\sqrt{9x-18}-5=0\)
BÀI 3: CHO BIỂU THỨC
Q=\(\frac{2}{2+\sqrt{x}}+\frac{1}{2-\sqrt{x}}+\frac{2\sqrt{x}}{x-4}\) ĐKXĐ x ≥ 0, x ≠ 4
a) Rút gọn biểu thức Q
b) Tính Q thì x = 81
c) Tìm x để Q = \(\frac{6}{5}\)
d) Tìm x để nguyên đó Q nguyên
gpt : a) \(\frac{5x}{\sqrt{4-x^2}}+\frac{8}{x^2}+\frac{2x}{4-x^2}+\frac{5\sqrt{4-x^2}}{x}+4=0\)
b) \(\frac{2x}{\sqrt{8x^2+25}}+\frac{125}{x^2}-14=0\)
c) \(\left(x^3-3x+2\right)\sqrt{3x-2}-2x^3+6x^2-4x=0\)
d) \(\sqrt{x^2-x+6}+\frac{4}{x-1}=x^2+x\)
Rút gọn \(P=\frac{\sqrt{x}+1}{4-x}:\frac{1}{2\sqrt{x}-x}+\frac{1}{2-\sqrt{x}}\) (x>0 , x khác 4)
1.Chmr rằng nếu: a,b >0 thì \(\sqrt{a}+\sqrt{b}\le\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\)
2. Rg biểu thức:
\(A=\frac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(1-\frac{1}{x-1}\right)\)
Gpt: a) \(\sqrt[4]{3\left(x+5\right)}-\sqrt[4]{11-x}=\sqrt[4]{13+x}-\sqrt[4]{3\left(3-x\right)}\)
b) \(\frac{1+2\sqrt{x}-x\sqrt{x}}{3-x-\sqrt{2-x}}=2\left(\frac{1+x\sqrt{x}}{1+x}\right)\) c) \(\sqrt{x+1}+\frac{4\left(\sqrt{x+1}+\sqrt{x-2}\right)}{3\left(\sqrt{x-2}+1\right)^2}=3\)
d) \(\sqrt{\frac{x-2}{x+1}}+\frac{x+2}{\left(\sqrt{x+2}+\sqrt{x-2}\right)^2}=1\) e) \(2x+1+x\sqrt{x^2+2}+\left(x+1\right)\sqrt{x^2+2x+2}=0\)
f) \(\sqrt{2x+3}\cdot\sqrt[3]{x+5}=x^2+x-6\)
1. Rút gọn
P=\(2\sqrt{1+\frac{1}{4}\left(\sqrt{\frac{1}{x}}-\sqrt{x}\right)^2}:\left[\sqrt{1+\frac{1}{4}\left(\sqrt{\frac{1}{x}}-\sqrt{x}\right)^2}-\frac{1}{2}\left(\sqrt{\frac{1}{x}}-\sqrt{x}\right)^2\right]\)
Bài 1: Tính :
\(C=\sqrt{\frac{3\sqrt{3}-4}{2\sqrt{3}+1}}-\sqrt{\frac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
\(B=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+....+\frac{1}{\sqrt{99}+\sqrt{100}}\)
\(D=\sqrt{1+\sqrt{3+\sqrt{13+4\sqrt{3}}}}+\sqrt{1-\sqrt{3-\sqrt{13-4\sqrt{3}}}}\)
Bài 2 : Cho \(P=\left(\frac{1}{\sqrt{x}-1}+\frac{x-\sqrt{x}+6}{x+\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{x-\sqrt{x}-2}{x+\sqrt{x}+2}\right)\)
a, Rút gọn P
b, Tìm GTNN
c, Tìm x để \(P.\frac{x-1}{x^2+8x}< -2\)
Tính
\(c,\frac{x\sqrt{x}-2x+28}{x-3\sqrt{x}-4}-\frac{\sqrt{x}-4}{\sqrt{x}+1}+\frac{\sqrt{x}+8}{4-\sqrt{x}}\left(x>0,x\ne16\right)\)
\(d,\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)
Giúp nha plsss
A = \(\frac{x-4\sqrt{x}+2}{\sqrt{x}-2}\) (\(x\ge0;x\ne4\))
B = \(\frac{x\sqrt{x}-1}{x-1}\) (\(x\ge0;x\ne1\))
C = \(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\) ( \(x>0;x\ne1\))
D = \(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\) (\(x\ge2\))
E = \(\frac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2}-2x}-\frac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2}-2x}\)
Rút Gọn Biểu Thức
1/ A = \(2x^3y\sqrt{\frac{y}{x^4}}+xy^2\sqrt{\frac{9}{y}}-x^2y^5\sqrt{\frac{4}{x^2y^7}}\) (x < 0, y > 0)
2/ B = \(\sqrt{a-4\sqrt{a}+4}-\sqrt{a+2\sqrt{a}+1}\) (a > 4)