\(E=3-3^2+3^3-3^4+.....+3^{119}\)
\(3E=3\left(3-3^2+3^3-3^4+.....+3^{119}\right)\)
\(3E=3^2-3^3+3^4-3^5+.......+3^{120}\)
\(3E+E=\left(3^2-3^3+3^4-3^5+.....+3^{120}\right)+\left(3-3^2+3^3-3^4+.....+3^{119}\right)\)
\(3E+E=3-3^{120}\)
\(E=\dfrac{3-3^{120}}{4}\)