Cho tổng T = \(\dfrac{2}{2^1}\)+\(\dfrac{3}{2^2}\)+\(\dfrac{4}{2^3}\)+..........+\(\dfrac{2016}{2^{2015}}\)+\(\dfrac{2017}{2^{2016}}\) So sánh T với 3
BT1: Cho A = \(\dfrac{1}{2017}+\dfrac{2}{2017^2}+\dfrac{3}{2017^3}+...+\dfrac{2017}{2017^{2017}}+\dfrac{2018}{2017^{2018}}\)
Chứng minh rằng : A < \(\dfrac{2017}{2016^2}\)
Rút gọn:
(\(\dfrac{2016}{1}+\dfrac{2015}{2}+...+\dfrac{2}{2015}+\dfrac{1}{2016}\)) : (\(\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}\))
BT1: CMR:
a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\)
b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)
c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)
d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)
e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\)
BT2: Tính tổng
a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)
b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\)
BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)
CMR: 1 < S < 2
Thu gọn:
A = \(\dfrac{2^4.3^3+2^3.3^4}{2^5.3^3-2^4.3^2}\) D = \(\dfrac{\left(\dfrac{1}{2}-\dfrac{1}{3}\right).\left(\dfrac{2}{3}-\dfrac{3}{4}\right)}{\left(\dfrac{1}{2}+\dfrac{1}{3}\right).\left(\dfrac{2}{3}+\dfrac{3}{4}\right)}\)
B = \(\dfrac{2^3-3^4-2^4.3^3}{2^5.3^4-2^6.3^3}\) E = \(\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{3}{4}\right).\left(\dfrac{2}{3}-\dfrac{3}{4}+\dfrac{5}{6}\right)\)
C = \(\dfrac{\dfrac{1}{2}-\dfrac{1}{2}:\dfrac{3}{4}-\dfrac{3}{4}}{\dfrac{2}{3}-\dfrac{2}{3}:\dfrac{5}{6}-\dfrac{5}{6}}\)
Giúp mình với ! 10k nha
Tìm x biết:
a) \(\dfrac{x+5}{3}\)=\(\dfrac{x-6}{7}\)
b) x - \(\dfrac{20}{11.13}\)-\(\dfrac{20}{13.15}\)-\(\dfrac{20}{15.17}\)-...-\(\dfrac{20}{53.55}\)=\(\dfrac{3}{11}\)
\(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{10}\)+...+\(\dfrac{2}{n\left(n+1\right)}\)=\(\dfrac{2015}{2016}\)
Cho A = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}\) ; B = \(\dfrac{2015}{1}+\dfrac{2014}{2}+...+\dfrac{2}{2014}+\dfrac{1}{2015}\)
Tính \(\dfrac{A}{B}\)
Tìm x \(\in\) Z biết:
3) \(\dfrac{1-18x}{2017}+\dfrac{2-18x}{2016}=\dfrac{3-18x}{2015}+\dfrac{4-18x}{2014}\)
a\(\dfrac{5}{6}x-\dfrac{2}{3}=3\dfrac{1}{2}\)
b\(\dfrac{4}{5}-\dfrac{3}{4}\div x=0,3\)
c\(\dfrac{-3}{2}-\dfrac{1}{4}x=1\dfrac{1}{3}-0,2x\)
d\(\left|\dfrac{3}{5}x+\dfrac{4}{3}\right|:\dfrac{2}{3}-0,5=1\dfrac{1}{2}\)
e\(\dfrac{4x-5}{2-3x}=\dfrac{3}{4}\)
giúp mình nhé