Đường Tròn (I) Nội Tiếp tam giác ABC, Tiếp Xúc với các cạnh BC, CA, AB lần lượt tại M N P. Chứng minh rằng \(a\overrightarrow{IM}+b\overrightarrow{IN}+c\overrightarrow{IP}=0\)
đường tròn nội tiếp (I) của tam giác ABC theo thứ tự tiếp xúc với các cạnh BC,CA,AB tại D,E,F. Chứng minh rằng: \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\overrightarrow{0}\)
Cho \(\Delta\)ABC ngoại tiếp đường tròn tâm I. Đặt AB = c, BC = a, CA= b. a) Cm: a.vecto IA + b.vecto IB + c. Vecto IC = vecto 0
b) Gọi M, N, P lần lượt là các tiếp điểm của đường tròn (I) với các cạnh BC, CA, AB
Cm: a. Vecto IM + b. Vecto IN + c. Vecto IP = vecto 0
cho tam giác ABC nội tiếp đường tròn tâm O từ A,B,C kẻ 3 đường phân giác của tam giác lần lượt cắt đường tròn tại A',B',C' . Gọi I là giao điểm của 3 đường phân giác , M là điểm đối xứng của O qua C'B' . Chứng minh vector OM = vector A'I
Bài 1:Cho tam giác ABC. Gọi I là tâm đường tròn ngoại tiếp tam giác. Chứng minh rằng. a.vecto IA + b.vecto IB+ c.vecto IC= vecto O
Bài 2: Cho tam giác ABC. Gọi M là điểm trên cạnh BC. Chứng minh:
Vecto AM= MC/BC.vectoAB+MB/BC.vectoAC
Cho tam giác ABC và điểm M tùy ý .gọi A ', B' , C' lần lượt là điểm đối xứng của M qua các điểm qua các trung điểm K,I,J của các cạnh BC ,CA ,AB
a Chứng minh ba đường thẳng AA' , BB' , CC' đồng quy tại N
b ) Chứng minh khi M di động ,MN luôn qua trọng tâm G tam giác ABC
cho tam giác ABC .I và J lần lượt là tâm đường tròn ngoại tiếp , nội tiếp tam giác ABC.gọi M là giao điểm của AJ với đường tròn tâm I.
C/m \(\left|\overrightarrow{MB}\right|=\left|\overrightarrow{MJ}\right|\)
Cho tam giác abc đều cạnh a, M là điểm nằm trong tam giác. Gọi I,H,K là hình chiếu M trên BC,CA,AB. Tìm tập hợp trọng tâm E của tam giác IMK khi M di động trên đường tròn nồi tiếp tam giác ABC.
@@ ~~ Các cao nhân giúp em bài này với ạ !!!
Bài 1: Cho tam giác ABC vuông tại A, BC=10cm, AC=6cm. Tính /\(\overline{CA}-\overline{CB}\)/.
Bài 2: Cho tam giác ABC:
a) Xác định điểm M thỏa mãn: \(\overline{MA}-\overline{MB}+\overline{MC}=0\)
b) G là trọng tâm của tam giác ABC. Chứng minh rằng:\(\overline{GA}+2\overline{GB}+3\overline{GC}=\overline{AC}\)
Bài 3: Gọi I,J lần lượt là trung điểm của các đoạn thẳng AB và CD. Chứng minh rằng:\(\overline{AD}+\overline{BC}=\overline{BD}+\overline{AC}=2\overline{IJ}\)
Cho tam giác ABC đều cạnh a (a>0).
1) D là điểm nằm trong tam giác. Gọi M, N, P lần lượt là hình chiếu vuông góc của D trên cạnh BC, CA, AB. Gọi G và G' lần lượt là trọng tâm các tam giác MNP, ABC. Chứng minh rằng D, G, G' thẳng hàng.
2) Tìm GTNN của biểu thức \(y=3\left|\overrightarrow{IA}+\overrightarrow{IB}-\overrightarrow{IC}\right|+\left|\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}\right|\)theo a khi I thay đổi trên đường thẳng AB.