Lời giải:
Đặt \(\sqrt[3]{2+10\sqrt{\frac{1}{27}}}=a; \sqrt[3]{2-10\sqrt{\frac{1}{27}}}=b\)
Khi đó: \(D=a+b\)
\(\left\{\begin{matrix} a^3+b^3=2+10\sqrt{\frac{1}{27}}+2-10\sqrt{\frac{1}{27}}=4\\ ab=\sqrt[3]{(2+10\sqrt{\frac{1}{27}})(2-10\sqrt{\frac{1}{27}})}=\frac{2}{3}\end{matrix}\right.\)
Có:
\(a^3+b^3=(a+b)^3-3ab(a+b)\)
\(\Leftrightarrow 4=D^3-3.\frac{2}{3}D\)
\(\Leftrightarrow D^3-2D-4=0\)
\(\Leftrightarrow (D-2)(D^2+2D+2)=0\)
Vì \(D^2+2D+2=(D+1)^2+1\neq 0\), do đó \(D-2=0\Leftrightarrow D=2\)