Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Qúy Công Tử

Tính

a) \(\sqrt{5}-\sqrt{48}+5\sqrt{27}-\sqrt{45}\)

b) \(\left(\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{2}-1\right)\)

c) \(3\sqrt{50}-2\sqrt{75}-4\dfrac{\sqrt{54}}{\sqrt{3}}-3\sqrt{\dfrac{1}{3}}\)

d) \(\sqrt{\left(\sqrt{3}-3\right)^2}+\sqrt{4-2\sqrt{3}}\)

e) \(\sqrt{48-2\sqrt{135}}-\sqrt{45}+\sqrt{18}\)

f) \(\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}+\dfrac{6}{2-\sqrt{10}}-\dfrac{20}{\sqrt{10}}\)

Nguyễn Lê Phước Thịnh
16 tháng 12 2022 lúc 14:17

a: \(=\sqrt{5}-3\sqrt{5}-4\sqrt{3}+15\sqrt{3}=-2\sqrt{5}+11\sqrt{3}\)

b: \(=3\sqrt{10}-\sqrt{5}+6-\sqrt{2}\)

c; \(=15\sqrt{2}-10\sqrt{3}-12\sqrt{2}-\sqrt{3}=-11\sqrt{3}+3\sqrt{2}\)

d: \(=3-\sqrt{3}+\sqrt{3}-1=2\)

f: \(=\sqrt{10}-\sqrt{10}-2-2\sqrt{10}=-2-2\sqrt{10}\)


Các câu hỏi tương tự
Quynh Existn
Xem chi tiết
Quynh Existn
Xem chi tiết
Anh Quynh
Xem chi tiết
Qúy Công Tử
Xem chi tiết
Ly Ly
Xem chi tiết
Quynh Existn
Xem chi tiết
Anh Quynh
Xem chi tiết
Ly Ly
Xem chi tiết
Anh Quynh
Xem chi tiết