\(\lim\limits_{x\rightarrow\pm3}\dfrac{x+2}{\sqrt{9-x^2}}=\infty\Rightarrow\) \(\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\) là 2 TCĐ
Đồ thị hàm số không có tiệm cận ngang
\(\lim\limits_{x\rightarrow\pm3}\dfrac{x+2}{\sqrt{9-x^2}}=\infty\Rightarrow\) \(\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\) là 2 TCĐ
Đồ thị hàm số không có tiệm cận ngang
Đồ thị hàm số `y = (x - sqrt{x^2 + 3x - 6})/(x^2 - 4)` có bao nhiêu đường tiệm cận
26. Tìm số đường tiệm cận ngang và số đường tiệm cận đứng của đồ thị hàm số y = \(\dfrac{\sqrt{x-1}}{x^2-3x+2}\)
Mọi người ơi cho mình hỏi bài này với ạ
1.Số đường tiệm cận của hàm số y=\(\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}\) là
2.Tìm tất cả các tiệm cận đứng của đồ thị hàm số y=\(\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}\)
Mình cảm ơn mọi người nhiều lắm !!!!!
25. Với m là tham số bất kỳ , đồ thị hs y= \(\dfrac{x+1}{\left(m^2+1\right).\sqrt{x^2-4}}\) có tất cả bao nhiêu đường tiệm cận ( tiệm cận ngang và tiệm cận đứng)
Gọi S là tập hợp các giá trị nguyên của m sao cho đồ thị hàm số y = \(\dfrac{2019x}{\sqrt{17x^2-1}-m\left|x\right|}\) có bốn đường tiệm cận (bao gồm tiệm cận đứng và tiệm cận ngang). Tính số phần tử của tập S
47. Số đường tiệm cận đứng của đồ thị hàm số y=\(\dfrac{\left(\sqrt{x+3}-2\right).sinx}{x^2-x}\)
Tìm m để Đồ thị của hàm số y=\(\dfrac{x^2+m}{x^2+mx}\) có 3 đường tiệm cận
tìm m để đồ thị hàm số \(y=\dfrac{x-m}{x^2+3x+4}\) có đúng 1 đường tiệm cận đứng
45. Tìm tất cả các đường tiệm cận ngang của đồ thị hàm số y = \(x.\left(\sqrt{x^2+2x}+x-2\sqrt{x^2+x}\right)\)