Ta có Δ=[-2(m-1)]^2-4.(m-3)=(2m-2)^2-4m+12
=4m^2-8m+4-4m+12=4m^2-12m+16
=4(m^2-3m+4)=4.[m^2-2.3/2+(3/2)^2-(3/2)^2+4]
=4.[(m-3/2)^2+7/4]>0(với mọi m)=>Δ>0
Vậy phương trình có 2 nghiệm phân biệt với mọi m
=> x1=[2m-2+2.√(m-3)^2+7/4]/2(m-2)=[m-1+√(m-3)^2+7/4]/(m-2)
x2=[m-1-√(m-3)^2+7/4]/(m-2)
Để pt có 2 nghiệm:
\(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(m-1\right)^2-\left(m-2\right)\left(m-3\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\3m\ge5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m\ge\dfrac{5}{3}\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m-2}{m-2}\\x_1x_2=\dfrac{m-3}{m-2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m-2}{m-2}\\2x_1x_2=\dfrac{2m-6}{m-2}\end{matrix}\right.\)
Cộng vế: \(x_1+x_2+2x_1x_2=\dfrac{4m-8}{m-2}=\dfrac{4\left(m-2\right)}{m-2}\)
\(\Leftrightarrow x_1+x_2+2x_1x_2=4\)
Đây là hệ thức liên hệ 2 nghiệm độc lập m
theo vi ét có x1+x2=(2m-2)/(m-2)(1)
x1.x2=(m-3)/(m-2)(2)
từ (2) =>x1x2(m-2)=m-3<=>x1.x2.m-2.x1.x2=m-3
<=>x1.x2.m-m=-3+2.x1.x2<=>m(x1.x2-1)=-3+2.x1.x2<=>m=(-3+2.x1.x2)/(x1.x2-1)(3)
thay m(3) vào pt (1) tự rút gọn n hé dài quá