\(x^3+3x^2+3x+2=x^3+3x^2+3x+1+1\)
\(=\left(x+1\right)^3+1^3=\left(x+2\right)\left[\left(x+1\right)^2-\left(x+1\right)+1\right]=\left(x+2\right)\left(x^2+x+1\right)\)
\(\Rightarrow\left(...\right)=\left(x+2\right)\)
\(x^3+3x^2+3x+2=x^3+3x^2+3x+1+1\)
\(=\left(x+1\right)^3+1^3=\left(x+2\right)\left[\left(x+1\right)^2-\left(x+1\right)+1\right]=\left(x+2\right)\left(x^2+x+1\right)\)
\(\Rightarrow\left(...\right)=\left(x+2\right)\)
Bài 1:Thực hiện các phép tính
a. (x5 +4x3 - 6x2):4x2
b. (x3 +x2-12) : (x-2)
c. (-2x5+3x2-4x3):2x2
d. (x3 - 64):(x2 + 4x + 16)
Bài 2:Rút gọn biểu thức
a. 3x (x - 2)- 5x (1 - x) - 8(x2 - 3)
b.(x - y) (x2 + xy + y2)+2y3
c. (x - y)2 + (x+y)2 - 2(x-y) (x+y)
trắc nghiệm
1. giá trị của đa thức -x^3+x khi x=-1 là
a.2 b.-1 c.0 d.-2
2.nhân tử*ở vế phải của đẳng thức a^3−a=(a^2+a).*
a.a b.-a c.a-1 d.1-a
3.kết quả phép chia (x^3+1):(x+1)là
a.x^2+x+1 b.x^2−x+1 c.(x−1)^2 d.x^2−14.đa thức thích hợp điền vào chỗ ... của đẳng thức \(\dfrac{x+5}{3x-2}=\dfrac{...}{3x^2-2x}\)a.x^2+5x b.x^2-5x
trắc nghiệm
1. giá trị của đa thức -x^3+x khi x=-1 là
a.2 b.-1 c.0 d.-2
2.nhân tử*ở vế phải của đẳng thức a^3−a=(a^2+a).*
a.a b.-a c.a-1 d.1-a
3.kết quả phép chia (x^3+1):(x+1)là
a.x^2+x+1 b.x^2−x+1 c.(x−1)^2 d.x^2−1
4.đa thức thích hợp điền vào chỗ ... của đẳng thức \(\dfrac{x+5}{3x-2}=\dfrac{...}{3x^2-2x}\)
a.x^2+5x b.x^2-5x
Cho g(x) là 1 đa thức với hệ số nguyên. CM: Đa thức f(x)=x2+x.g(x3)f(x)=x2+x.g(x3) không chia hết cho đa thức: x2−x+1
Câu 1: (1,5 điểm) Phân tích các đa thức sau thành nhân tử:
a). x3 – 2x2 + x b) -2x2 – 7x + 9 c) –x2 + 6x + 6y + y2
Câu 2: (1,5 điểm). Cho biểu thức: A = (3x – x2) / (x3 – x2 – 6x)
a). Rút gọn biểu thức A.
b) Tìm giá trị nguyên của x để biểu thức A có giá trị là một số nguyên.
Câu 3: (2 điểm) Tìm x, biết:
a) x2 – 5x = 0
b) n3 + xn2 – 4 chia hết cho n2 + 4n + 4 với mọi n ≠ -2
c) (1- 2x)(1 + 2x) – x(x + 2)(x – 2) = 0
Bài 1: Phân tích các đa thức sau thành nhân tử
a. 1 - 4x2
b. 8 - 27x3
c. 27 + 27x + 9x 2 + x3
d. 2x3 + 4x2 + 2x
e. x2 - 5x - y2 + 5y
f. x2 - 6x + 9 - y2
g. 10x (x - y) - 6y(y - x)
h. x2 - 4x - 5
i. x4 - y4
Bài 2: Tìm x, biết
a. 5(x - 2) = x - 2
b. 3(x - 5) = 5 - x
c. (x +2)2 - (x+ 2) (x - 2) = 0
Bài 3: Tìm giá trị nhỏ nhất của biểu thức
a. A = x2 - 6x + 11
b. B = 4x2 - 20x + 101
c. C = -x2 - 4xy + 5y2 + 10x - 22y + 28
dùng định nghĩa hai phân thức bằng nhau chứng tỏ rằng :
a,\(\dfrac{x2y2}{5}\)=\(\dfrac{7x3y4}{35xy}\)
b,\(\dfrac{x3-4x}{10-5x}\)=\(\dfrac{-X2-2X}{5}\)
C,\(\dfrac{x+2}{X-1}\)=\(\dfrac{\left(x+2\right)\left(x+1\right)}{x2-1}\)
d,\(\dfrac{x2-x-2}{x+1}\)=\(\dfrac{x2-3x+2}{x-1}\)
e,\(\dfrac{x3+8}{x2-2x+4}\)=x+2
. Khai triển luỹ thừa( x – 2)2
2. Thực hiện phép tính:
a) 2x2 .( 4x – 5x3) + 10x5 – 5x3
b) (x + 2)( x2 – 2x + 4) + (x – 4)(x+2)
Bài 2 (2đ) Tìm x, biết:
a)x2 – 2x = 0 b) (3x – 1)2 – 16= 0
Bài 3 (2,5đ) Phân tích đa thức sau thành nhân tử:
a) 3x2 – 30x + 75
b) xy – x2 – x + y
c) x2 – 7x – 8
Bài 4 (1,5đ) Làm tính chia:
a) (12x3y3 – 2x2y3 + 6x2y4) : 4x2y3
b) (2x3 – 7x2 + 12x – 9): (2x – 3)
Bài 5 (1,0đ)
a) Tìm đa thức f(x) = x2 + ax + b , biết khi chia f(x) cho x + 1 thì dư là 6, còn khi chia cho x – 2 thì dư là 3
b) Tìm giá trị nhỏ nhất của biểu thức A = x.(x – 3)