Cho hai biểu thức A=\(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)và B=\(\dfrac{x-5}{x-1}\)-\(\dfrac{2}{\sqrt{x}+1}\)+\(\dfrac{4}{\sqrt{x}-1}\)với x≥0;x≠1
1. Tính giá trị của biểu thức A tại x=36
2.Chứng minh rằng B=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
3. Đặt P=A/B.Tìm các giá trị x nguyên để \(\sqrt{P}\)<1/2
Cho biểu thức P=\(\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
a, Rút gọn P.
b,Tính \(\sqrt{P}\) khi x=5 +2\(\sqrt{3}\)
Cho a=\(\dfrac{1+\dfrac{\sqrt{3}}{2}}{1+\sqrt{1+\dfrac{\sqrt{3}}{2}}}+\dfrac{1-\dfrac{\sqrt{3}}{2}}{1-\sqrt{1-\dfrac{\sqrt{3}}{2}}}\)
Chứng minh rằng a là một nghiệm của phương trình:
\(2013x^2-2014x+1\)
Cho biểu thức : P= 1+\(\left(\dfrac{2a+\sqrt{a}-1}{1-a}-\dfrac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right).\dfrac{a-\sqrt{a}}{2\sqrt{a}-1}\)
a,Rút gọn P .
b,Chứng minh rằng \(P>\dfrac{2}{3}\)
c,Cho \(P=\dfrac{\sqrt{6}}{1+\sqrt{6}}\) ,tìm giá trị của a?
Rút gọn
\(P=\dfrac{\sqrt[3]{2}+\sqrt{7+2\sqrt{10}}+\sqrt[3]{3\sqrt[3]{4}-3\sqrt[3]{2}-1}}{\sqrt{5}+\sqrt{2}+1}\)
Cho pt: \(x^2+4x+3=\sqrt{8x+5}\left(x+1\right)+\sqrt{6x+2}\)có 1 trong các nghiệm có dạng \(a+\sqrt{b}\).Tính \(a^2+20b^2\)
a)\(\left\{{}\begin{matrix}\sqrt{2}x-\sqrt{3}y=1\\x+\sqrt{3}y=\sqrt{2}\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}x-2\sqrt{2}y=\sqrt{5}\\\sqrt{2}x+y=1-\sqrt{10}\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\x+\left(\sqrt{2}+1\right)y=1\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\sqrt{3}x-\sqrt{2}y=1\\\sqrt{2}x+\sqrt{3}y=\sqrt{3}\end{matrix}\right.\)
Giải phương trình:
a) \(x^2+\sqrt{x+1}=1\)
b)\(\sqrt{3+x}+\sqrt{6-x}=3\)
c)\(\sqrt{3x-2}+\sqrt{x-1}=3\)
d)\(\sqrt{3+x}-\sqrt{2-x}=1\)
e)\(\sqrt{x+9}=5-\sqrt{2x+4}\)
f)\(\sqrt{3x+4}-\sqrt{2x-1}=\sqrt{x+3}\)
g)\(x-\sqrt{4x-3}=2\)
Cho \(x=\frac{2}{\frac{1}{\sqrt{\sqrt{2}+1}-1}-\frac{1}{\sqrt{\sqrt{2}+1}+1}}\)
Tính giá trị biểu thức \(B=\left(x^4-x^3-x^2+2x-1\right)^{2011}\)