Bạn Mysterious Merson làm ẩu rồi !
\(\dfrac{x+\sqrt{x}}{\sqrt{x}}+\dfrac{x-4}{\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\)
\(=\sqrt{x}+1+\sqrt{x}-2\)
\(=2\sqrt{x}-1\)
ta có : \(\dfrac{x+\sqrt{x}}{\sqrt{x}}+\dfrac{x-4}{\sqrt{x}+2}=\dfrac{\left(x+\sqrt{x}\right)\left(\sqrt{x}+2\right)+\left(x-4\right)\left(\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x\sqrt{x}+2x+x+2\sqrt{x}+x\sqrt{x}-4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{2x\sqrt{x}+3x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}\left(2x+3\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{2x+3\sqrt{x}+2}{\sqrt{x}+2}\)