Xét \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{2}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=2k\end{matrix}\right.\) (1)
Thay (1) vào \(x^2+y^2=100\)
\(\Rightarrow\)\(x^2+y^2=100\)\(=\left(3k\right)^2+\left(4k\right)^2\)
\(=9k^2+16k^2\)
\(=25k^2=100\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=\pm2\)
\(\Rightarrow\left\{{}\begin{matrix}x=\pm6\\y=\pm8\\z=\pm4\end{matrix}\right.\)
Xét \(\dfrac{x}{7}=\dfrac{4}{y}=\dfrac{z}{2}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=7k\\y=4k\\z=2k\end{matrix}\right.\) (2)
Thay (2) vào \(x-3x=-2x=9=-2.7k=9\)
\(\Rightarrow k=\dfrac{-9}{14}\)
\(\Rightarrow\left\{{}\begin{matrix}x=7k=7.\dfrac{-9}{14}=\dfrac{-9}{2}\\y=4k=4.\dfrac{-9}{14}=\dfrac{-18}{7}\\z=2k=2.\dfrac{-9}{14}=\dfrac{-9}{7}\end{matrix}\right.\)
a) Ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x^2}{3^2}=\dfrac{y^2}{4^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x^2}{3^2}=\dfrac{y^2}{4^2}=\dfrac{x^2+y^2}{3^2+4^2}=\dfrac{100}{25}=4\)
\(\dfrac{x^2}{3^2}=4\Rightarrow x=6\)
\(\dfrac{y^2}{4^2}=4\Rightarrow y=8\)
\(\dfrac{z}{2}=\dfrac{x}{3}=\dfrac{6}{3}\Rightarrow z=4\)
Vậy ...
b) Ta có:
\(x-3x=9\)
\(\Leftrightarrow x=-4,5\)
\(\Leftrightarrow\dfrac{x}{7}=\dfrac{y}{4}\Rightarrow\dfrac{-4,5}{7}=\dfrac{y}{4}\Rightarrow y=-\dfrac{18}{7}\)
\(\Leftrightarrow\dfrac{x}{7}=\dfrac{z}{2}\Rightarrow\dfrac{-4,5}{7}=\dfrac{z}{2}\Rightarrow z=-\dfrac{9}{7}\)
Vậy ...