\(\dfrac{7+5\sqrt{3}}{3\sqrt{3}+5}\\ =\dfrac{\left(7+5\sqrt{3}\right)\left(3\sqrt{3}-5\right)}{\left(3\sqrt{3}+5\right)\left(3\sqrt{3}-5\right)}\\ =\dfrac{21\sqrt{3}-35+45-25\sqrt{3}}{\left(3\sqrt{3}\right)^2-5^2}\\ =\dfrac{-4\sqrt{3}+10}{27-25}\\ =\dfrac{2\left(-2\sqrt{3}+5\right)}{2}\\ =5-2\sqrt{3}\)
\(\dfrac{7+5\sqrt{3}}{3\sqrt{3}+5}\)
\(=\dfrac{\left(7+5\sqrt{3}\right)\left(3\sqrt{3}-5\right)}{\left(3\sqrt{3}+5\right)\left(3\sqrt{3}-5\right)}\)
\(=\dfrac{21\sqrt{3}-35+45-25\sqrt{3}}{27-25}\)
\(=\dfrac{10-4\sqrt{3}}{2}\)
\(=5-2\sqrt{3}\)