Giải PT:
a) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
b) \(\sqrt{18x-9}-0,5\sqrt{2x-1}+\dfrac{1}{2}\sqrt{25\left(2x-1\right)}+\sqrt{49\left(2x-1\right)}=24\)
c) \(\sqrt{36x-72}-15\sqrt{\dfrac{x-2}{25}}=4\left(5+\sqrt{x-2}\right)\)
d) \(\sqrt{\dfrac{1}{3x+2}}-\dfrac{1}{2}\sqrt{\dfrac{9}{3x+2}}+\sqrt{\dfrac{16}{3x+2}}-5\sqrt{\dfrac{1}{12x+8}}=1\)
e) \(\dfrac{1}{2}\sqrt{\dfrac{49x}{x+2}}-3\sqrt{\dfrac{x}{4x+8}}-\sqrt{\dfrac{x}{x+2}}-\sqrt{5}=0\)
giải các phương trình vô tỉ sau
1) \(\dfrac{1}{\sqrt{x+1}}+\dfrac{1}{\sqrt{2x+1}}+\dfrac{1}{\sqrt{2x-1}}=\dfrac{4.\sqrt{10}}{5}\)
2) \(\left(3-x\right).\sqrt{x-1}+\sqrt{5-2x}=\sqrt{40-34x+10x^2-x^3}\)
1. rút gọn biểu thức
A= \(\dfrac{1+\sqrt{5}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}+\dfrac{1-\sqrt{5}}{\sqrt{2}-\sqrt{3}-\sqrt{5}}\)
2. rút gọn biểu thức
\(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)
3. rút gọn
A=\(\left(\dfrac{1}{\sqrt{x-1}}\right)-\left(\dfrac{1}{\sqrt{x+1}}\right):\left(\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{x+1}}\right)\)
4.rút gọn
P= \(\dfrac{1-\sqrt{x-1}}{\sqrt{x-2\sqrt{x-1}}}\)
5.rút gọn biểu thức
a.\(\sqrt{11-2\sqrt{16}}\)
b.\(\sqrt{9-2\sqrt{14}}\)
6.rút gọn
Q=\(\dfrac{\sqrt{x+\sqrt{x^2-y^2}}-\sqrt[]{x-\sqrt{x-y^2}}}{\sqrt{2\left(x-y\right)}}\)
7.cho biểu thức
A= \(\dfrac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2-2x}}-\dfrac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2}-2x}\)
a. tìm đkxđ
b.rút gọn
c.tính giá trị để A<2
giải phương trình:
\(\dfrac{4}{x}+\sqrt{1-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)
Rút gọn
A=\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-...-\dfrac{1}{\sqrt{24}-\sqrt{25}}\)
B=\(\dfrac{5}{4+\sqrt{11}}+\dfrac{11-3\sqrt{11}}{\sqrt{11}-3}-\dfrac{4}{\sqrt{5}-1}+\sqrt{\left(\sqrt{5}-2\right)^2}\)
C=\(\dfrac{\sqrt{x}+1}{x\sqrt[]{x}+x+\sqrt{x}}:\dfrac{1}{x^2-\sqrt{x}}\) (với x>0; x#1)
D=\(\dfrac{\sqrt{x^2-10x+25}}{x-5}\)
Giải phương trình vô tỉ:
1) \(8x^2+\sqrt{\dfrac{1}{x}}=\dfrac{5}{2}\)
2) \(x^2+2x+4=3\sqrt{x^3+4x}\)
3) \(\sqrt{\dfrac{x^3}{3-4x}}-\dfrac{1}{2\sqrt{x}}=\sqrt{x}\)
4) \(\sqrt{\dfrac{5\sqrt{2}+7}{x+1}}+4x=3\sqrt{2}-1\)
chứng minh giá trị của biểu thức H = \(\dfrac{2x}{x+3\sqrt{x}+2}+\dfrac{5\sqrt{x}+1}{x+4\sqrt{x}+3}+\dfrac{\sqrt{x}+10}{x+5\sqrt{x}+6}\) không phụ thuộc vào biến số x
Rút gọn:
\(A=\left(\dfrac{2x-1+\sqrt{x}}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x+\sqrt{x}}\right).\dfrac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}-1\)
Giải phương trình:
1. \(\sqrt{\dfrac{42}{5-x}}+\sqrt{\dfrac{60}{7-x}}=6\)
2. \(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
3. \(x^2+x+12\sqrt{x+1}=36\)
4. \(\sqrt{x+2}-\sqrt{x-6}=2\)
5. \(\sqrt[3]{x-1}-\sqrt[3]{x-3}=\sqrt[3]{2}\)
6. \(5\sqrt{1+x^3}=2\left(x^2+2\right)\)
6. \(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)