Thực hiện phép tính \(\dfrac{4^5.9^{4^{ }}-2.6^{9^{ }}}{2^{10^{ }}.3^{8^{ }}+6^{8^{ }}.20}:\sqrt{\dfrac{25}{9}}\)
1) \(25^{10}.\left(\dfrac{1}{5}\right)^{20}+\left(\dfrac{-3}{4}\right)^8.\left(\dfrac{-4}{3}\right)^8-2018^0\)
2) \(\left(\dfrac{5}{2}-\dfrac{4}{3}\right).\dfrac{6}{7}+\left(\dfrac{-3}{2}\right)^5:\left(\dfrac{-3}{2}\right)^3\)
3) \(\dfrac{4^5.9^4-2.6^9}{3^8.2^{10}+6^8.20}\)
8) \(A=\dfrac{9}{10}-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)
9) \(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{2014}}+\dfrac{1}{3^{2015}}\)
10) \(P=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2005}}{\dfrac{2004}{1}+\dfrac{2003}{2}+\dfrac{2002}{3}+...+\dfrac{1}{2004}}\)
\(\dfrac{\left(13\dfrac{1}{4}-2\dfrac{5}{27}-10\dfrac{5}{6}\right).230\dfrac{1}{25}+46\dfrac{3}{4}}{\left(1\dfrac{3}{10}+\dfrac{10}{3}\right):\left(12\dfrac{1}{3}-14\dfrac{2}{7}\right)}\)
\(\dfrac{\left(1+2+3+...+99+100\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+.....+99-100}\)
1 tìm x
a,\(\dfrac{1}{4}x-\left|-\dfrac{3}{10}\right|\)
\(\left(\dfrac{2}{5}-\dfrac{7}{10}x\right):1\dfrac{2}{3}=\dfrac{-3}{4}\)
\(\dfrac{7}{16}:\left(\dfrac{x}{4}+\dfrac{9}{2}\right)-1\dfrac{5}{6}=0\)
Thực hiện phép tính
a, A = \(\left(\dfrac{1}{4\times9}+\dfrac{1}{9\times14}+\dfrac{1}{14\times19}+....+\dfrac{1}{44\times49}\right)\times\dfrac{1-3-5-7-....-49}{89}\)
b, B = \(\dfrac{2^{12}\times3^5-4^6\times9^2}{\left(2^2\times3\right)^6+8^4\times3^5}-\dfrac{5^{10}\times7^3-25^5\times49^2}{\left(125\times7\right)^3-5^9\times14^3}\)
\(\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^3\cdot3\right)+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\) .Tính tổng
Cho A=\(\dfrac{2}{1}.\dfrac{4}{3}.\dfrac{6}{5}.\dfrac{8}{7}.\dfrac{10}{9}...\dfrac{100}{99}\). Chứng minh rằng 12<A<13
1/ So sánh: \(\dfrac{4^{1008}}{5^{2015}}\) và \(\dfrac{16^{504}.3^{2016}}{5^{2016}.4^{1008}}\)
2/ Rút gọn:
a/ \(\dfrac{2^{12}.27^3+4^5.9^6}{8^3.3^{10}+6^{10}}\)
b/ \(\dfrac{1+3^4+3^8+3^{12}}{1+3^2+3^4+3^6+3^8+3^{10}+3^{12}}\)
c/ \(\dfrac{4^{10}+8^4}{4^5+8^6}\)
3/ Biết: \(2^2+3^2+4^2+...+13^2=816\)
Tính: \(B=1^2+3^2+6^2+9^2+...+39^2\)
4/ Chứng tỏ:
a/ \(3^{15}-9^6⋮13\)
b/ \(8^7-2^{18}⋮14\)
5/ Tìm GTLN của biểu thức:
\(A=x^2+3\left|y-2\right|+1\)
6/ Tìm GTNN của biểu thức:
\(B=\left(-5\right)-\left(2x-1\right)^2\)