Rút gọn biểu thức
\(a.\dfrac{\sqrt{5}-2\sqrt{3}}{\sqrt{5}+\sqrt{3}}-\dfrac{2\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\)
\(b.x\sqrt{2x+2}+\left(x+1\right)\sqrt{\dfrac{2}{x+1}}-4\sqrt{\dfrac{x+1}{2}}\)
Rút gọn biểu thức : \(x\sqrt{2x+2}+\left(x+1\right)\sqrt{\dfrac{2}{x+1}}-4\sqrt{\dfrac{x+1}{2}}\)
Tìm Min và Max(nếu có)
A=2x-\(\sqrt{x}\)
B=x+\(\sqrt{x}\)
C=1+\(\sqrt{2-x}\)
D=\(\sqrt{-x^2+2x+5}\)
E=\(\dfrac{1}{2x-\sqrt{x}+3}\)
F=\(\dfrac{1}{3-\sqrt{1-x^2}}\)
Giải phương trình:
a) \(\dfrac{1}{x+\sqrt{1+x^2}}+\dfrac{1}{x-\sqrt{1+x^2}}+2=0\)
b) \(2x-5a\sqrt{x-a}+2a\left(a-1\right)=0\) với a>0
Bài 1: Tính:
\(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{1}{\sqrt{6}}}\)
Bài 2: Rút gọn rồi tính:
a) A=\(\dfrac{a^4-4a^2+3}{a^4-12a^2+27},a=\sqrt{3}-\sqrt{2}\)
b) \(B=\dfrac{1}{\sqrt{h+2\sqrt{h-1}}}+\dfrac{1}{\sqrt{h-2\sqrt{h-1}}},h=3\)
c) \(C=\dfrac{\sqrt{2x+2\sqrt{x^2-4}}}{\sqrt{x^2-4}x+2},x=2\left(\sqrt{3}+1\right)\)
d) \(D=\left(\dfrac{3}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\dfrac{3}{\sqrt{1-a^2}}+1\right),a=\dfrac{\sqrt{3}}{2+\sqrt{3}}\)
Mọi người giúp em với!!!!!!!!!!!!!!
- Khử mẫu của biểu thức lấy căn ( mình làm rồi nhưng hơi nghi ngờ về kết quả nên muốn kiểm tra lại ) :
a) \(x\sqrt{\dfrac{6}{x}}+\sqrt{\dfrac{2x}{3}}\)
b) \(xy\sqrt{\dfrac{1}{xy}}+x\sqrt{\dfrac{y}{x}}-y^2\sqrt{\dfrac{x}{y}}\)
Xác định giá trị biểu thức sau theo cách thích hợp
\(\dfrac{1}{\sqrt{2}+\sqrt{1}}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{1}{\sqrt{4}+\sqrt{3}}\)
- Rút gọn :
a) \(A=\dfrac{\sqrt{x+\sqrt{2x-1}}}{\sqrt{2}}\)
b) \(B=\dfrac{1}{x+\sqrt{1+x^2}}+\dfrac{1}{x-\sqrt{1+x^2}}+2\)
\(\sqrt{\dfrac{1}{x^2-2x+1}}\)