1. Đạo hàm của hàm số y= \(\left(x^3-5\right).\sqrt{x}\) bằng bao nhiêu?
2. Đạo hàm của hàm số y= \(\dfrac{1}{2}x^6-\dfrac{3}{x}+2\sqrt{x}\) là?
3. Hàm số y= \(2x+1+\dfrac{2}{x-2}\) có đạo hàm bằng?
Tính đạo hàm:
1) \(y = \sin^2 \sqrt {4x+3}\)
2) \(y = \dfrac{3}{4}x^4 - \dfrac{34}{\sqrt{x}} + \pi\)
3) \(y = \sqrt{\dfrac{\sin4x}{\cos(x^2+2)}}\)
4) \(y = \dfrac{1}{\sqrt{\sin^2(6-x)+4x}}\)
5) \(y = x.\sin^2\left(\dfrac{2x-1}{4-x}\right)\)
6) \(y = \dfrac{4}{3}x^3 + \dfrac{3}{2\sqrt{x}} + \sqrt{2x}\)
7) \(y = \sqrt{\cot^3(x^2-1)} + \left(\dfrac{\sin2x}{\cos3x}\right)^4\)
8) \(y = \dfrac{\tan3x}{\cot^23x} - (\sin2x + \cos3x)^5\)
9) \(y = \cot^65x - \cos^43x + \sin3x\)
1/ Tính đạo hàm:
\(y=\left|x-1\right|\left(x\ne1\right)\)
bang 2 cach
2/ Dao ham:
\(y=\sqrt{\dfrac{1}{2}+\dfrac{1}{2}\sqrt{\dfrac{1}{2}+\dfrac{1}{2}\sqrt{\dfrac{1}{2}+\dfrac{1}{2}\cos x}}}\left(x\in0;\pi\right)\)
Cho 2 số hữu tỉ a và b sao cho \(y=\sqrt{x-1}+\sqrt{2x+1}\) có đạo hàm tại điểm \(x_0=3\) là \(y'\left(3\right)=\dfrac{a}{\sqrt{2}}+\dfrac{b}{\sqrt{7}}\). Tính a+b?
Cho hàm số \(y=\sqrt{x+\sqrt{x^2+1}}\). Tính đạo gàm của hàm số.
A. \(y'=\dfrac{x+\sqrt{x^2+1}}{2\sqrt{x^2+1}}\)
B. \(y'=\dfrac{\sqrt{x+\sqrt{x^2+1}}}{\sqrt{x^2+1}}\)
C. \(y'=\dfrac{\sqrt{x^2+1}}{2\sqrt{\sqrt{x+\sqrt{x^2+1}}}}\)
D. \(y'=\dfrac{\sqrt{x+\sqrt{x^2+1}}}{2\sqrt{x^2+1}}\)
Tính đạo hàm:
a) y= \(\dfrac{x^3+2\sqrt{x-1}}{x-1}\)
b) y= \(\dfrac{4x^3+2x-3}{\sqrt{x^2+2}}\)
c) y= \(|x^3+x+1|\)
d) y= \(\sqrt{7-6x^4+x^3}\)
e) y= \(\dfrac{x^5+1}{2-\sqrt{x^2+3}}\)
Bài 1: tìm đạo hàm của các hàm số sau
1. y=6x2 -\(\dfrac{4}{x}\)+1
2. y=\(\dfrac{2x+1}{-x+1}\)
3. y= \(\sqrt{x^2-3x+4}\)
4. y=\(\dfrac{\left(x^2-1\right)\left(x+3\right)}{x-4}\)
5. y=\(\dfrac{1}{2x^2-3x+5}\)
6. y=(x+1)\(\sqrt{x^2-1}\)
tìm y'
a) \(y=sin^3x\)
b) \(y=cos^3x\)
c) \(y=sinx.cos^2x\)
d) \(y=\sqrt[3]{x}+\sqrt[3]{\left(x+1\right)^2}\)
tính đạo hàm
y=\(\dfrac{x\sqrt{x}+x+\sqrt{x}}{\left(x^2-\sqrt{x}\right)\left(\sqrt{x}+1\right)}\)