Vì \(\sqrt{2}\simeq1,414>1\)
⇒ Hàm số \(y=\left(\sqrt{2}\right)^x\) đồng biến trên R.
⇒ Chọn C.
căn 2>1
=>y=(căn 2)^x đồng biến
=>Chọn C
Vì \(\sqrt{2}\simeq1,414>1\)
⇒ Hàm số \(y=\left(\sqrt{2}\right)^x\) đồng biến trên R.
⇒ Chọn C.
căn 2>1
=>y=(căn 2)^x đồng biến
=>Chọn C
Đề bài
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
A. \(y = {\log _3}x\)
B. \(y = {\log _{\sqrt 3 }}x\)
C. \({\log _{\frac{1}{e}}}x\)
D. \(y = {\log _\pi }x\)
Đề bài
Tìm tập xác định của mỗi hàm số sau:
a) \(y = \frac{5}{{{2^x} - 3}}\)
b) \(y = \sqrt {25 - {5^x}} \)
c) \(y = \frac{x}{{1 - \ln x}}\)
d) \(y = \sqrt {1 - {{\log }_3}x} \)
Đề bài
Tập xác định của hàm số \(y = {\log _{0,5}}\left( {{x^2} - 2x + 1} \right)\) là:
A. \(\mathbb{R}\)
B. \(\mathbb{R}\backslash \{ 1\} \)
C. \(x \ne 0\)
D. \(x > 0\)
Đề bài
Cho x; y là các số thực dương. Rút gọn mỗi biểu thức sau:
\(A = \frac{{{x^{\frac{5}{4}}}y + x.{y^{\frac{5}{4}}}}}{{\sqrt[4]{x} + \sqrt[4]{y}}}\)
\(B = {\left( {\sqrt[7]{{\frac{x}{y}\sqrt[5]{{\frac{y}{x}}}}}} \right)^{\frac{{35}}{4}}}\)
Tập nghiệm của bất phương trình \({\log _{\frac{1}{4}}}x > - 2\) là:
A. \(\left( { - \infty ;16} \right)\)
B. \(\left( {16; + \infty } \right)\)
C. \((0;16)\)
D. \(\left( { - \infty ;0} \right)\)
Đề bài
Giải mỗi bất phương trình sau:
a) \({5^x} < 0,125\)
b) \({\left( {\frac{1}{3}} \right)^{2x + 1}} \ge 3\)
c) \({\log _{0,3}}x > 0\)
d) \(\ln (x + 4) > \ln (2x - 3)\)
Đề bài
Cho \(a > 0;a \ne 1;{a^{\frac{3}{5}}} = b\)
a) Viết \({a^6};{a^3}b;\frac{{{a^9}}}{{{b^9}}}\) theo lũy thừa cơ số b
b) Tính \({\log _a}b;\,{\log _a}\left( {{a^2}{b^5}} \right);\,{\log _{\sqrt[5]{a}}}\left( {\frac{a}{b}} \right)\)
Cho ba số thực dương a, b, c khác 1 và đồ thị của ba hàm số mũ \(y = {a^x};\,y = {b^x};\,y = {c^x}\) được cho bởi Hình 14. Kết luận nào sau đây là đúng đối với ba số a, b, c ?
A. c < a < b
B. c < b < a
C. a < b < c
D. b < c < a
Tập nghiệm của bất phương trình \({(0,2)^x} > 1\) là:
A. \(\left( { - \infty ;2} \right)\)
B. \(\left( {0,2; + \infty } \right)\)
C. \(\left( {0; + \infty } \right)\)
D. \(\left( { - \infty ;0} \right)\)