a: TH1: x>-2
\(D=\dfrac{x\left(x+2\right)\left(x-1\right)}{x\left(x+2\right)-\left(x-2\right)\left(x+2\right)}=\dfrac{x\left(x+2\right)\left(x-1\right)}{\left(x+2\right)\cdot2}=\dfrac{x\left(x-1\right)}{2}\)
TH2: x<-2
\(D=\dfrac{x\left(x+2\right)\left(x-1\right)}{-x\left(x+2\right)-\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{\left(x+2\right)\cdot x\cdot\left(x-1\right)}{-\left(x+2\right)\left(x+x-2\right)}=\dfrac{-x\left(x-1\right)}{2\left(x-1\right)}=\dfrac{-x}{2}\)
b: TH1: x>-2
D=x(x-1)/2
Vì x(x-1) chia hết cho 2
nên D luôn là số nguyên nếu x>-2
TH2: x<-2
Để D nguyên thì -x chia hết cho 2
=>x chia hết cho 2
c: Khi x=6 thì \(D=\dfrac{6\left(6-1\right)}{2}=3\cdot5=15\)