Xét \(\left(a-b\right)-\left(b+c\right)+\left(c-a\right)+\left(a+b-c\right)\) ta có:
\(\left(a-b\right)-\left(b+c\right)+\left(c-a\right)+\left(a+b-c\right)\)
\(=a-b-b-c+c-a+a+b-c\)
\(=\left(a-a+a\right)-\left(b+b-b\right)-\left(c-c+c\right)\)
\(=a-b-c\) ( luôn đúng )
Vậy đẳng thức \(\left(a-b\right)-\left(b+c\right)+\left(c-a\right)+\left(a+b-c\right)=a-b-c\) luôn đúng với mọi a; b; c