Cho hình thang ABCD đáy lớn BC và BD = CD. Kéo dài AB về phía B lấy điểm M, gọi N là trung điểm của BC, MN cắt AC tại K. Chứng minh góc BDM = góc CDK.
Cho hình chữ nhật ABCD có độ dài các cạnh AB=a;AD=b và 2 đường chéo cắt nhau tại O.Điểm E nắng giữa B và O.Đường thẳng AE cắt BC và ĐC lần lượt tại K và G ;M là điểm đx với A qua E.CMR a.CM song song BD b.AE*BE=EK*ED và AE^2=EK*EG
Cho tam giác ABC nội tiếp đường tròn (O) . Các điểm M,N lần lượt là trung điểm của các cạnh BC,AC. Tia MN cát (O) tại D. Chứng minh \(\frac{AB}{CD}+\frac{AC}{BD}=\frac{BC}{AD}\)
Cho hình vuông ABCD có cạnh bằng a. Một góc 45 độ quay xung quanh đỉnh A và nằm bên trong hình vuông cắt cạnh BC,CD lần lượt tại M và N.
1) C/m MN luôn tiếp xúc với một đường tròn cố định.
2) C/m a2- BM.DN=a(BM+DN)
cho hình thoi ABCD có \(\widehat{B}=60^0\) .Đường thẳng qua D cắt AB,AC kéo dài lần lượt tại E và F.gọi M là giao điểm của AF và EC.Chứng minh AD tiếp xúc với đường tròn ngoại tiếp MDF
Cho tứ giác ABCD . Gọi M , N , P , Q , E , F lần lượt là trung điểm của BD , AC , AB , DC , AD và BC
a, CMR : PM = NQ
b, CMR : MN , PQ và EF đồng quy
bài 1 : cho hình chữ nhật abcd có ab=5cm bc=12cm
a). tính độ dài đoạn thẳng BD
b). kẻ AH vuông BD tại H . Tính độ dài đoạn thẳng AH.
c). đường thẳng AH cắt BC , DC lần lượt tại I và K . chứng minh rằng AH^2=HI.HK
Cho tam giác ABC có AB ACGH.
1. Chứng minh BH = EC .
2. Vẽ hình bình hành 4EFH . Chứng minh rằng 4F vuông góc với BC.
3. Gọi O là giao điểm các đường trung trực của tam giác ABC, M và N lần lượt là trung điểm của
EH và BC, biết OH = OE . Chứng minh tứ giác AMON là hình bình hành và tính góc BỌC.
cho tứ giác abcd có 2 đường chéo ac và bd vuông góc với nhau. ac=m, db=n. gọi e, f lần lượt là trung điểm của ab và cd.tính độ dài đoạn ef?