Cho ΔABC cân tại B. Kẻ AM⊥ BC (M ∈ BC) và CM ⊥ BA (K ϵ BA)
a) CMR ΔBAM = ΔBCN
b) Gọi O là giao điểm của AM và CN
CMR ΔNOA = ΔMOC
c) CMR BO là tia phân giác của giác ABC
d) Lấy điểm H sao cho AC là trung trực cuả đoạn thẳng OH. Tìm điều kiện của ΔABC để Δ OCH đều
Bài 6. Cho ΔABC có AB = AC = 5cm, BC = 8cm. Kẻ AH vuông góc BC (H thuộc BC).
a) Chứng minh: HB = HC ̂
b) Tính độ dài đoạn AH?
c) Kẻ HD vuông góc AB (D thuộc AB), HE vuông góc AC (E thuộc AC). Chứng minh: ΔHDE cân.
Cho tam giác ABC vuông tại A. BI là tia phân giác của góc ABC (I thuộc AC). Kẻ ID vuông góc với BC tại D.
a) Chứng minh rằng .
b) Chứng minh cân và BI là đường trung trực của đoạn thẳng AD.
c) Kéo dài DI cắt đường thẳng BA tại E. Chứng minh ID < IE và IE = IC.
d) Tam giác ABC cần có thêm điều kiện gì để điểm I cách đều ba đỉnh của tam giác BEC.
tam giác abc có đường cao ah và trung tuyến am chia góc a thành 3 góc bằng nhau . chứng minh rằng tam giác abc là tam giác vuông và tam giác abm là tam giác đều
cho tam giác ABC, đường cao AH. Trong tuyến AM chia góc A thành 3 góc bằng nhau
a, chứng minh ABC vuông
b, chứng minh ABM đều
Cho tam giác ABC có AB=AC, AM là phân giác của góc BAC ( M thuộc BC ):
a, Chứng minh tam giác ABM= tam giác ACM
b, Chứng minh M là trung điểm của BC và AM vuông góc BC
c, Kẻ ME vuông góc AB ( E thuộc AB ) và MF vuông góc AC ( F thuộc AC ). Chứng minh ME=MF
Cho tam giác ABC có AB=AC, AM là phân giác của góc BAC ( M thuộc BC ):
a, Chứng minh tam giác ABM= tam giác ACM
b, Chứng minh M là trung điểm của BC và AM vuông góc BC
c, Kẻ MF vuông góc AB ( F thuộc AB ) và ME vuông góc AC ( E thuộc AC ). Chứng minh EF // BC
Cho tam giác ABC vuông cân tại A. Vẽ đường thẳng a qua điểm A, sao cho B và C thuộc cùng 1 nửa mặt phẳng có bờ là đường thẳng a. Vẽ BH và CA vuông góc với đường thẳng a (H và K thuộc đường thẳng a). Gọi M là trung điểm của BC. Chứng minh rằng :
A. AH = CK
B. HK = BH + CK
C. Tam giác MHK là tam giác vuông cân .
mik đang cần gấp