\(\Leftrightarrow cos2x+2cosx+cos^2x+2sin^2x=0\\ \Leftrightarrow cos2x+2cosx+cos^2x+1-cos2x=0\\ \Leftrightarrow\left(cos^2x+1\right)=0\Leftrightarrow x=\pi+k2\pi\)
\(\Leftrightarrow cos2x+2cosx+cos^2x+2sin^2x=0\\ \Leftrightarrow cos2x+2cosx+cos^2x+1-cos2x=0\\ \Leftrightarrow\left(cos^2x+1\right)=0\Leftrightarrow x=\pi+k2\pi\)
a)\(\dfrac{2sin^2\left(\dfrac{3x}{2}-\dfrac{\pi}{4}\right)+\sqrt{3}cos^3x\left(1-3tan^2x\right)}{2sinx-1}=-1\)
b)\(\dfrac{2sin2x-cos2x-7sinx+4+\sqrt{3}}{2cosx+\sqrt{3}}=1\)
c)\(\dfrac{\left(1+sinx+cos2x\right)sin\left(x+\dfrac{\pi}{4}\right)}{1+tanx}=\dfrac{1}{\sqrt{2}}cosx\)
d)\(\left(\sqrt{3}sin2x+1\right)\left(2sinx-1\right)+sin3x-cos2x-sinx=0\)
1)\(cos2x+5=2\sqrt{2}\left(2-cosx\right)sin\left(x-\frac{\pi}{4}\right)\)
2)
\(sin^2x-2sinx+2=sin^23x\)
3)
\(sinx-2sin2x-sin3x=2\sqrt{2}\)
4)
\(\left(cos4x-cos2x\right)^2=5+sin3x\)
5)
\(\sqrt{5+sin^23x=sinx+2cosx}\)
6)
\(5\left(sinx+\frac{cos3x+sin3x}{1+2sin2x}\right)=cos2x+3\)
7)
\(\frac{sin^42x+cos^42x}{tan\left(\frac{\pi}{4}-x\right)tan\left(\frac{\pi}{4}+x\right)}=cos^44x\)
giải các pt
a) \(1-2cos2x-\sqrt{3}sinx+cosx=0\)
b) \(cos2x+cos^2x-sinx.cosx=8\left(cosx-sinx\right)\)
c) \(sin^2x+3sinx.cosx-4cos^2x=4\left(sinx-cosx\right)\)
d) \(\frac{cos^3x-sin^3x}{2cosx+3sinx}=cos2x\)
\(sinx+4cosx=2+sin2x\)
\(\left(1-sin2x\right)\left(sinx+cosx\right)=cos2x\)
\(1+sinx+cosx+sin2x+cos2x=0\)
\(sinx+sin2x+sin3x=1+cosx+cos2x\)
\(sin^22x-cos^28x=sin\left(\dfrac{17\pi}{2}+10x\right)\)
1. Cho biết \(cosx=\dfrac{3}{4}\). Tính giá trị của biểu thức \(P=sin^22x\).
2. Giải phương trình \(cos2x-sin\left(x+\dfrac{\pi}{3}\right)=0\)
giải phương trình sau:
a,\(\frac{sin2x+2cosx-sinx-1}{tanx+\sqrt{3}}=0\)
b,\(\frac{\left(1+sinx+cos2x\right)sinx\left(x+\frac{\pi}{4}\right)}{1+tanx}=\frac{1}{\sqrt{2}}cosx\)
c,\(\frac{\left(1-sin2x\right)cosx}{\left(1+sin2x\right)\left(1-sinx\right)}=\sqrt{3}\)
d,\(\frac{1}{sinx}+\frac{1}{sin\left(x-\frac{3\pi}{2}\right)}=4sin\left(\frac{7\pi}{4}-x\right)\)
\(2\cos^3x+\cos2x+\sin x=0\)
giải phương trình: \(\dfrac{5\left(\sqrt{3}\sin x+\cos x\right)-\sqrt{3}\cos2x+\sin2x-6}{\cot x-1}=0\)
\(1,sin^{2008}x+cos^{2008}x=1\)
\(2,sin^5x+cos^5x+sin2x+cos2x=1+\sqrt{2}\)
\(3,4cos^2x+3tan^2x-4\sqrt{3}cosx+2\sqrt{3}tanx+4=0\)