\(\lim\sqrt{\dfrac{9^n+3^{n+1}}{5^n+9^{n+a}}}=\lim\sqrt{\dfrac{1+3.\left(\dfrac{1}{3}\right)^n}{\left(\dfrac{5}{9}\right)^n+9^a}}=\sqrt{\dfrac{1+0}{0+9^a}}=\dfrac{1}{3^a}\)
\(\Rightarrow\dfrac{1}{3^a}< \dfrac{1}{2187}\Rightarrow a>log_32187=7\)
Có \(2023-8+1=2016\) số