Có 3 cách
C1: R nt R nt R
Rtđ = 3R = 3.12 = 36 (Ω)
C2: R nt (R // R )
Rtđ = 12 + \(\frac{12.12}{12+12}\)= 18 (Ω)
C3 : R // R // R
\(\frac{1}{R_{tđ}}\)= \(\frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{1}{4}\)
⇒ Rtđ = 4 (Ω)
Học tốt !!!
Cách 1 : \(R_1ntR_2ntR_3\)
\(R_m=R_1+R_2+R_3=12+12+12=36\left(ôm\right)\)
Cách 2 : \(R_1\backslash\backslash R_2\backslash\backslash R_3\)
\(\frac{1}{R_m}=\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}=\frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{1}{4}\)
\(\Leftrightarrow R_m=4\left(ôm\right)\)
Cách 3 : \(R_1nt\left(R_2\backslash\backslash R_3\right)\)
\(R_m=R_1+\frac{R_2.R_3}{R_2+R_3}=\frac{12.12}{12+12}=6\left(ôm\right)\)
Cách 4 : \(\left(R_1\backslash\backslash R_2\right)ntR_3\)
\(R_m=\frac{R_1.R_2}{R_1+R_2}+R_3=\frac{12.12}{12+12}+12=6\left(ôm\right)\)
Cách 5 : \(\left(R_1ntR_2\right)\backslash\backslash R_3\)
:
\(R_m=\frac{\left(R1+R2\right)R3}{R1+R2+R3}=\frac{24.12}{12+12+12}=8\left(ôm\right)\)
Vậy...