Bài 10 : Chứng minh rằng độ dài mỗi đường trung tuyến của một tam giác nhỏ hơn tổng độ dài của 2 đường trung tuyến kia
Chứng minh rằng tổng ba đường trung tuyến của tam giác lớn hơn 3/4 chu vi nhưng nhỏ hơn chu vi của tam giác đó
Chứng minh rằng tổng các độ dài đường trung tuyến của một tam giác lớn hơn \(\dfrac{3}{4}\)chu vi và nhỏ hơn chu vi của tam giác đó
CMR: Trong 1 tam giác tổng độ dài 3 đường trung tuyến lớn hơn 3/4 chu vi và nhỏ hơn chu vi của tam giác đó
Theo kết quả của bài 64 chương II, phần Hình học, SBT Toán 7 một ta có :
Đoạn thẳng nối trung điểm hai cạnh của một tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy
Vận dụng kết quả trên để giải bài toán sau : Cho tam giác ABC, đường trung tuyến AD. Kẻ đường trung tuyến BE cắt AD ở G. Gọi I, K theo thứ tự là trung điểm của GA, GB. Chứng minh rằng :
a) IK // DE, IK = DE
b) \(AG=\dfrac{2}{3}AD\)
Gọi G là trọng tâm của tam giác ABC. Vẽ điểm D sao cho G là trung điểm của AD. Chứng minh rằng :
a) Các cạnh của tam giác BGD bằng \(\dfrac{2}{3}\) các đường trung tuyến của tam giác ABC
b) Các đường trung tuyến của tam giác BGD bằng một nửa các cạnh của tam giác ABC
Cho tam giác ABC với đường trung tuyến AD. Trên tia AD lấy điểm E sao cho AD = DE, trên tia BC lấy điểm M sao cho BC = CM
a) Tìm trọng tâm của tam giác AEM
b) So sánh các cạnh của tam giác ABC với các đường trung tuyến của tam giác AEM
c) So sánh các đường trung tuyến của tam giác ABC với các cạnh của tam giác AEM
Gọi G là trọng tâm của tam giác ABC. Trên tia AG lấy điểm G' sao cho G là trung điểm của AG'
a) So sánh các cạnh của tam giác BGG' với các đường trung tuyến của tam giác ABC
b) So sánh các đường trung tuyến của tam giác BGG' với các cạnh của tam giác ABC
Cho tam giác ABC vuông tại B và AB=3cm,BC=4 cm.Vẽ BE là đường trung tuyến của tam giác ABC.
A) Tính AC và BE (Biết: Trong một tam giác vuông đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền.)
B)Trên tia đối của tia BC lấy điểm D sao cho AD=AC.Chứng minh AB là đường trung tuyến của tam giác ADC.
C)Gọi G là giao điểm của DE và AB;N là trung điểm của AD.Chứng minh: G là trọng tâm của tam giác ADC.Từ đó suy ra :C, G, N thẳng hàng.
D)Chứng minh: DE=CN