Có: 10 \(\equiv1\) ( mod 3 )
=> 102017 \(\equiv1\) ( mod 3)
2 . 102017 \(\equiv2\) ( mod 3 ) (1)
2017 \(\equiv1\) (mod 3 ) (2)
Từ (1) và (2) => 2 . 102017 + 2017 \(\equiv2+1\) (mod 3 )
hay 2 . 102017 + 2017 \(⋮3\left(đpcm\right)\)
Có: \(10\equiv1\left(mod3\right)\Rightarrow10^{2017}\equiv1\left(mod3\right)\)
\(2.10^{2017}\equiv2\left(mod3\right)\left(1\right)\)
\(2017\equiv1\left(mod3\right)\)
Từ (1) và (2) \(\Rightarrow2.10^{2017}+2017\equiv2+1\left(mod3\right)\)
hay 2.102017 + 2017 \(⋮\) 3 (đpcm)