Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mai Anh

CMR : với p là số nguyên tố lớn hơn 2 thì giá trị m trong phân số : \(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+..+\frac{1}{p-1}\left(m\in N,n\in N\right)\), chia hết cho p

Võ Đông Anh Tuấn
1 tháng 1 2017 lúc 10:28

Do p là số nguyên tố nên \(p-1\) là số chẵn , suy ra : \(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{p-1}\)

\(=\left(\frac{1}{1}+\frac{1}{p-1}\right)+\left(\frac{1}{2}+\frac{1}{p-2}\right)+\left(\frac{1}{3}+\frac{1}{p-3}\right)+...+\left(\frac{1}{\frac{p-1}{2}}+\frac{1}{\frac{p+1}{2}}\right)\)

\(=\frac{p}{1.\left(p-1\right)}+\frac{p}{2.\left(p-2\right)}+\frac{p}{3.\left(p-3\right)}+...+\frac{p}{\left(\frac{p-1}{2}\right)\left(\frac{p+1}{2}\right)}\)

\(=p\left[\frac{1}{1.\left(p-1\right)}+\frac{1}{2.\left(p-2\right)}+\frac{1}{3.\left(p-3\right)}+...+\frac{1}{\left(\frac{p-1}{2}\right)\left(\frac{p+1}{2}\right)}\right]\)

Ta có : \(1.\left(p-1\right).2.\left(p-2\right)...\frac{p-1}{2}.\frac{p+1}{2}=\left(p-1\right)!\)

Suy ra : \(\frac{m}{n}\) có dạng :

\(\frac{m}{n}=p\frac{q}{\left(p-1\right)!}\Rightarrow m\left(p-1\right)!=npq\Rightarrow m\left(p-1\right)!⋮p\)\(\left(p-1\right)!⋮̸p\) nên \(\Rightarrow m⋮p\).

Chúc bạn học tốt nha !!!

soyeon_Tiểubàng giải
1 tháng 1 2017 lúc 10:38

\(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{p-1}\)

\(\frac{m}{n}=\left(1+\frac{1}{p-1}\right)+\left(\frac{1}{2}+\frac{1}{p-2}\right)+...+\)\(\left(\frac{1}{\left(p-1\right):2}+\frac{1}{\left(p-1\right):2+1}\right)\)

\(\frac{m}{n}=p.\)(\(\frac{1}{1.\left(p-1\right)}+\frac{1}{2.\left(p-2\right)}+...+\)\(\frac{1}{\left[\left(p-1\right):2\right].\left[\left(p-1\right):2+1\right]}\))

MC: 1.2.3...(p-1)

Gọi các thừa số phụ lần lượt là: k1;k2;k3;...;kp-1

Khi đó, \(\frac{m}{n}=\frac{p.\left(k_1+k_2+k_3+...+k_{p-1},\right)}{1.2.3...\left(p-1\right)}\)

Do p nguyên tố > 2 mà mẫu không chứa thừa số p nên đến khi rút gọn tử số vẫn chứa thừa số nguyên tố p

=> m chia hết cho p (đpvm)

Võ Đông Anh Tuấn
1 tháng 1 2017 lúc 10:18

Mình bận xem mấy cái dạng bài tập hóa . Bạn cần gấp không mình làm cho .hihi


Các câu hỏi tương tự
Bảo Chi
Xem chi tiết
Trần Thu Trang
Xem chi tiết
Vương Hàn
Xem chi tiết
Lê Hiển Vinh
Xem chi tiết
Trần Lưu Gia Ngân
Xem chi tiết
Thiên thần chính nghĩa
Xem chi tiết
Hot girl Quỳnh Anh
Xem chi tiết
Bùi Nguyễn Minh Hảo
Xem chi tiết
Cậu Bé Ngu Ngơ
Xem chi tiết