chứng minh rằng : s= \(\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-......+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+....+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}< 0,2\)
chứng minh
\(S=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}< 0,2\)
1, Tính : P = \(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
2,Biết : 13 + 23 + .......+103 = 3025
Tính S = 23 + 43 + 63 + ....+ 203
CMR :
\(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2004^2}>\frac{1}{2004}\)
CMR với mọi số tự nhiên \(n\ge1\):
a ) \(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{2}\)
b ) \(\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{\left(2n+1\right)^2}< \frac{1}{4}.\)
1/ Tính : \(\frac{-8}{5}+\frac{207207}{201201}\)
2/ Tính:
\(M=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2002}}{\frac{2001}{1}+\frac{2002}{2}+\frac{1999}{3}+...+\frac{1}{2001}}\)
Cho B = \(\frac{1}{3}\)+ \(\frac{1}{3^2}\)+ \(\frac{1}{3^3}\)+ \(\frac{1}{3^4}\)+...+ \(\frac{1}{3^{2004}}\)+ \(\frac{1}{3^{2005}}\) . CMR : B < \(\frac{1}{2}\)
a)Chứng minh rằng nếu:
\(\frac{x}{a+2b+c}\)=\(\frac{y}{2a+b-c}\)=\(\frac{z}{4a-4b+c}\) thì \(\frac{a}{x+2y+z}\)=\(\frac{b}{2x+y-z}\)=\(\frac{c}{4x-4y+z}\)
b) Chứng mình rằng: S= \(\frac{1}{5^2}\)-\(\frac{1}{5^4}\)+\(\frac{1}{5^6}\)-...+\(\frac{1}{5^{4n-2}}\)-\(\frac{1}{5^{4n}}\)+...+\(\frac{1}{5^{2010}}\)-\(\frac{1}{5^{2012}}\) < \(\frac{1}{26}\)
2.CMR \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2010^2}< \frac{3}{4}\)