Lời giải:
Ta có: \(2x^4+3x^3+8x^2+6x+5=0\)
\(\Leftrightarrow 4x^4+6x^3+16x^2+12x+10=0\)
\(\Leftrightarrow (x^4+9x^2+4+6x^3+4x^2+12x)+(3x^4+3x^2+6)=0\)
\(\Leftrightarrow (x^2+3x+2)^2+3(x^4+x^2+\frac{1}{4})+\frac{21}{4}=0\)
\(\Leftrightarrow (x^2+3x+2)^2+3(x^2+\frac{1}{2})^2+\frac{21}{4}=0(*)\)
Thấy rằng \((x^2+3x+2)^2\geq 0; (x^2+\frac{1}{2})^2\geq 0\forall x\in\mathbb{R}\)
Do đó \((x^2+3x+2)^2+3(x^2+\frac{1}{2})^2+\frac{21}{4}\geq \frac{21}{4}>0\)
Suy ra \((*)\) vô nghiệm dẫn đến PT đầu tiên vô nghiệm (đpcm)