\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\dfrac{bc+ac+ab}{abc}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ac\right)=abc\)
\(\Leftrightarrow a^2b+abc+a^2c+ab^2+b^2c+abc+bc^2+ac^2=0\)
\(\Leftrightarrow ab\left(a+b+c\right)+bc\left(a+b+c\right)+ac\left(a+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)b\left(a+c\right)+ac\left(a+c\right)=0\)
\(\Leftrightarrow\left(a+c\right)\left(ab+b^2+bc+ac\right)=0\)
\(\Leftrightarrow\left(a+c\right)\left(a+b\right)\left(b+c\right)=0\)