Áp dụng BĐT B.C.S ta có
\(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}\ge\dfrac{9}{\left(a+b+c\right)^2}\)
mặt khác do \(a+b+c\le3\Rightarrow\dfrac{9}{\left(a+b+c\right)^2}\ge1\)
\(\Rightarrow\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}\ge1\)(*)
ta lại có \(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}\le3\)
\(\Rightarrow\dfrac{2007}{ab+bc+ac}\ge\dfrac{2007}{3}=669\)(**)
lấy (*)+(**) vế theo vế ta được
\(\dfrac{1}{a^2+b^2+c^2}+\dfrac{2009}{ab+bc+ac}\ge669+1=670\left(dpcm\right)\)
Đúng 0
Bình luận (0)