CMR: \(\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\)
Chứng minh rằng : \(\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+....+\dfrac{1}{100^2}< \dfrac{1}{4}\)
Chứng minh rằng : \(\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\)
Tính giá trị biểu thức A , biết rằng A = M : N
Mà M = \(\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
N = \(\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)
Rút gọn ;
D = \(\dfrac{1}{5}-\dfrac{1}{5^2}+\dfrac{1}{5^3}-\dfrac{1}{5^4}+\dfrac{1}{5^5}-\dfrac{1}{5^6}+...+\dfrac{1}{5^{99}}-\dfrac{1}{5^{100}}+\dfrac{1}{6.5^{100}}\)
\(\dfrac{\left(13\dfrac{1}{4}-2\dfrac{5}{27}-10\dfrac{5}{6}\right).230\dfrac{1}{25}+46\dfrac{3}{4}}{\left(1\dfrac{3}{10}+\dfrac{10}{3}\right):\left(12\dfrac{1}{3}-14\dfrac{2}{7}\right)}\)
\(\dfrac{\left(1+2+3+...+99+100\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+.....+99-100}\)
Chứng minh rằng:
\(\dfrac{1}{6}\) < \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}\) < \(\dfrac{1}{4}\)
\(tính:\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{7}-\dfrac{1}{6}+\dfrac{1}{5}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{2}\)
a,\(-4\dfrac{1}{3}.\left(\dfrac{1}{2}-\dfrac{1}{6}\right)< hoac=x< hoac=\dfrac{-2}{5}.\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{3}{4}\right)\)
b, \(-4\dfrac{2}{5}.2\dfrac{4}{3}< hoac=x< hoac=-2\dfrac{3}{5}:1\dfrac{6}{15}\)