Chứng tỏ rằng :\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{299}+\dfrac{1}{300}>\dfrac{2}{3}\)
Tính tích \(A=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{899}{900}\)
Chứng tỏ rằng : \(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}< 2\)
Tính giá trị của biểu thức sau :
\(M=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{10.11.12}\)
BT1: Tính nhanh
1) \(\left(\dfrac{-4}{9}+\dfrac{3}{7}\right):1\dfrac{1}{15}+\left(\dfrac{4}{7}-\dfrac{5}{9}\right):1\dfrac{1}{15}\)
2) \(3\dfrac{2}{9}.15\dfrac{4}{7}-3\dfrac{2}{9}.8\dfrac{1}{7}+3\dfrac{2}{9}.\dfrac{15}{7}-3\dfrac{2}{9}.\dfrac{1}{7}\)
Tính:
\(\dfrac{\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}}{\dfrac{2}{3}-\dfrac{2}{5}-\dfrac{2}{7}}\) + \(\dfrac{\dfrac{4}{7}-\dfrac{4}{9}+\dfrac{4}{11}}{\dfrac{3}{7}-\dfrac{1}{3}+\dfrac{9}{11}}\)=?
CMR: \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{2013}< \dfrac{1}{4}\)
Chứng minh rằng :
\(\dfrac{7}{12}< \dfrac{1}{21}+\dfrac{1}{20}+...+\dfrac{1}{40}< \dfrac{5}{6}\)
( Chú ý : \(\dfrac{1}{21}+\dfrac{1}{20}\)chứ k phải \(\dfrac{1}{21}+\dfrac{1}{22}\) nha )
Tính nhanh:
11) \(\dfrac{5}{7}\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{4}{7}\right)+\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{4}{7}\right):\dfrac{7}{5}\)
12)\(\dfrac{43}{5}\left(\dfrac{17}{3}-\dfrac{16}{9}+2\right)-\dfrac{43}{5}\left(\dfrac{17}{3}-\dfrac{16}{9}\right)\)
BT2: Tính nhanh
9) \(\dfrac{98}{99}+\dfrac{89}{100}+\dfrac{100}{101}.\left(\dfrac{1}{12}-\dfrac{1}{3}+\dfrac{1}{4}\right)\)
10) \(\left(\dfrac{78}{79}+\dfrac{79}{80}+\dfrac{80}{81}\right).\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{3}{10}-\dfrac{2}{3}\right)\)
Giúp mk nha!
BT2: Tính nhanh
1) \(\dfrac{5}{6}-\dfrac{6}{7}+\dfrac{7}{8}-\dfrac{8}{9}+\dfrac{10}{9}-\dfrac{5}{6}+\dfrac{6}{7}-\dfrac{7}{8}+\dfrac{8}{9}\)
2) \(\dfrac{1}{13}+\dfrac{16}{7}+\dfrac{3}{105}-\dfrac{9}{7}-\dfrac{-12}{13}\)
CMR :
\(A=\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+....+\dfrac{1}{17}< 2\)