Ta có:
\(3^{n+2}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^{n+1}\left(3+1\right)+2^{n+2}\left(2+1\right)\)
\(=3^{n+1}\cdot4+2^{n+2}\cdot3\)
\(=3^n\cdot3\cdot2\cdot2+2^{n+1}\cdot3\cdot2\)
\(=3^n\cdot6\cdot2+2^{n+1}\cdot6\)
\(=6\left(3^n\cdot2+2^{n+1}\right)⋮6\)
Vậy \(3^{n+2}+3^{n+1}+2^{n+3}+2^{n+2}⋮6\)