Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Naruto Uzumaki

CMR: 1+1/√2+1/\(\sqrt{ }\)3+....+1/\(\sqrt{ }\)2500<100

Akai Haruma
27 tháng 5 2019 lúc 16:11

Lời giải:

Đặt \(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{2500}}\)

\(\frac{A}{2}=\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+...+\frac{1}{2\sqrt{2500}}\)

\(\frac{A}{2}< \frac{1}{2}+\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{2499}+\sqrt{2500}}\)

\(\frac{A}{2}< \frac{1}{2}+\frac{\sqrt{2}-1}{(\sqrt{1}+\sqrt{2})(\sqrt{2}-\sqrt{1})}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{2}+\sqrt{3})(\sqrt{3}-\sqrt{2})}+....+\frac{\sqrt{2500}-\sqrt{2499}}{(\sqrt{2499}+\sqrt{2500})(\sqrt{2500}-\sqrt{2499})}\)

\(\frac{A}{2}< \frac{1}{2}+(\sqrt{2}-\sqrt{1})+(\sqrt{3}-\sqrt{2})+...+(\sqrt{2500}-\sqrt{2499})\)

\(\frac{A}{2}< \frac{1}{2}+\sqrt{2500}-\sqrt{1}=49+\frac{1}{2}< 50\)

\(\Rightarrow A< 100\) (đpcm)

P.s: Bạn lưu ý lần sau gõ đề bài bằng công thức toán.


Các câu hỏi tương tự
Phạm Phương Anh
Xem chi tiết
Phương Phạm
Xem chi tiết
Ship Mều Móm Babie
Xem chi tiết
Baby so cute >.<
Xem chi tiết
Tấn Phát
Xem chi tiết
Nguyễn Trâm
Xem chi tiết
Nguyệt Trần
Xem chi tiết
autumn
Xem chi tiết