Ôn tập toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Phương Thảo

CM:\(3< 1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}< 6\)

Mới vô
1 tháng 5 2017 lúc 8:39

Gọi \(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{63}\)\(S\)

\(S=1+\dfrac{1}{2}+\left(\dfrac{1}{3}+\dfrac{1}{4}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\right)+\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{16}\right)+\left(\dfrac{1}{17}+\dfrac{1}{18}+...+\dfrac{1}{32}\right)+\left(\dfrac{1}{33}+\dfrac{1}{34}+...+\dfrac{1}{63}+\dfrac{1}{64}\right)-\dfrac{1}{64}\\ =\left(1-\dfrac{1}{64}\right)+\dfrac{1}{2}+\left(\dfrac{1}{3}+\dfrac{1}{4}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\right)+\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{16}\right)+\left(\dfrac{1}{17}+\dfrac{1}{18}+...+\dfrac{1}{32}\right)+\left(\dfrac{1}{33}+\dfrac{1}{34}+...+\dfrac{1}{63}+\dfrac{1}{64}\right)\)

Ta nhận thấy:

\(\dfrac{1}{3}\) lớn hơn \(\dfrac{1}{4}\)

\(\dfrac{1}{5},\dfrac{1}{6},\dfrac{1}{7}\) đều lớn hơn \(\dfrac{1}{8}\)

\(\dfrac{1}{9},\dfrac{1}{10},...,\dfrac{1}{15}\) đều lớn hơn \(\dfrac{1}{16}\)

\(\dfrac{1}{17},\dfrac{1}{18},...,\dfrac{1}{31}\) đều lớn hơn \(\dfrac{1}{32}\)

\(\dfrac{1}{33},\dfrac{1}{34},...,\dfrac{1}{63}\) đều lớn hơn \(\dfrac{1}{64}\)

\(\Rightarrow S>\left(1-\dfrac{1}{64}\right)+\dfrac{1}{2}+\left(\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}\right)+\left(\dfrac{1}{16}+\dfrac{1}{16}+...+\dfrac{1}{16}\right)+\left(\dfrac{1}{32}+\dfrac{1}{32}+...+\dfrac{1}{32}\right)+\left(\dfrac{1}{64}+\dfrac{1}{64}+...+\dfrac{1}{64}\right)\\ S>\left(1-\dfrac{1}{64}\right)+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}\\ S>\dfrac{63}{64}+\left(\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}\right)\\ S>\dfrac{63}{64}+3>3\)Mặt khác ta có:

\(S=1+\left(\dfrac{1}{2}+\dfrac{1}{3}\right)+\left(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}\right)+\left(\dfrac{1}{8}+\dfrac{1}{9}+...+\dfrac{1}{15}\right)+\left(\dfrac{1}{16}+\dfrac{1}{17}+...+\dfrac{1}{31}\right)+\left(\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{63}\right)\)

\(\dfrac{1}{3}\) bé hơn \(\dfrac{1}{2}\)

\(\dfrac{1}{5},\dfrac{1}{6},\dfrac{1}{7}\) đều bé hơn \(\dfrac{1}{4}\)

\(\dfrac{1}{9},\dfrac{1}{10},...,\dfrac{1}{15}\) đều bé hơn \(\dfrac{1}{8}\)

\(\dfrac{1}{17},\dfrac{1}{18},...,\dfrac{1}{31}\) đều bé hơn \(\dfrac{1}{16}\)

\(\dfrac{1}{33},\dfrac{1}{34},...,\dfrac{1}{63}\) đều bé hơn \(\dfrac{1}{32}\)

\(\Rightarrow S< 1+\left(\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(\dfrac{1}{8}+\dfrac{1}{8}+...+\dfrac{1}{8}\right)+\left(\dfrac{1}{16}+\dfrac{1}{16}+...+\dfrac{1}{16}\right)+\left(\dfrac{1}{32}+\dfrac{1}{32}+...+\dfrac{1}{32}\right)\\ S< 1+1+1+1+1+1\\ S< 6\)


Các câu hỏi tương tự
Hoàng Thị Xuân Mai
Xem chi tiết
Kiyoko Vũ
Xem chi tiết
Tuan Dang
Xem chi tiết
Tuyết Nhi Melody
Xem chi tiết
Hải Đăng
Xem chi tiết
Huỳnh Hạnh Nhi
Xem chi tiết
Nguyễn Thu Thảo
Xem chi tiết
Khánh Linh
Xem chi tiết
Tuyết Nhi Melody
Xem chi tiết