Bài 5: Phép cộng các phân thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bảo Ngọc cute

C/m nếu \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)

thì \(\dfrac{1}{x^{2003}}+\dfrac{1}{y^{2003}}+\dfrac{1}{z^{2003}}=\dfrac{1}{x^{2003}+y^{2003}+z^{2003}}\)

Akai Haruma
7 tháng 1 2019 lúc 16:37

Lời giải:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow \frac{x+y}{xy}+\frac{x+y}{z(x+y+z)}=0\)

\(\Leftrightarrow (x+y)\left(\frac{1}{xy}+\frac{1}{z(x+y+z)}\right)=0\)

\(\Leftrightarrow (x+y).\frac{z(x+y+z)+xy}{xyz(x+y+z)}=0\)

\(\Leftrightarrow (x+y).\frac{z(y+z)+x(z+y)}{xyz(x+y+z)}=0\)

\(\Leftrightarrow \frac{(x+y)(z+x)(z+y)}{xyz(x+y+z)}=0\Rightarrow (x+y)(y+z)(x+z)=0\)

\(\Rightarrow \left[\begin{matrix} x=-y\\ y=-z\\ z=-x\end{matrix}\right.\)

Không mất tổng quát, giả sử \(x=-y\):

\(\frac{1}{x^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{(-y)^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{z^{2003}}\)

\(\frac{1}{x^{2003}+y^{2003}+z^{2003}}=\frac{1}{(-y)^{2003}+y^{2003}+z^{2003}}=\frac{1}{z^{2003}}\)

Do đó: \(\frac{1}{x^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{x^{2003}+y^{2003}+z^{2003}}\) (đpcm)


Các câu hỏi tương tự
Trần Văn Thanh
Xem chi tiết
Nguyễn Thanh Vân
Xem chi tiết
Trần Thị Hảo
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Ngọc Linh Phan
Xem chi tiết
Duy Trần
Xem chi tiết
Trần Thị Tuyết Ngân
Xem chi tiết
pro
Xem chi tiết
Nguyễn Thị Bình Yên
Xem chi tiết