Do a+b+c=0 nên a+b=-c => -(a+b)=c; thay vào ta có:
\(a^3+b^3-\left(a+b\right)^3=a^3+b^3-\left(a^3+3a^2b+3ab^2+b^3\right)\)
\(=-3a^2b-3ab^2=-\left(3ab\left(a+b\right)\right)\)
\(=-\left(-3abc\right)=3abc\)
Từ trên ta có: \(\left(x-3\right)^3+\left(2x-3\right)^3=\left(3\left(x-2\right)\right)^3=\left(3x-6\right)^3\)
\(=\left(x-3+2x-3\right)^3\)
Coi x-3 là a; 2x-3 là b thì 3x- 6 là c;
Mà a+b =c nên : \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
\(=>3ab\left(a+b\right)=0=>3abc=0\)
\(=>\left\{{}\begin{matrix}x-3=0\\2x-3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=\dfrac{3}{2}\\x=2\end{matrix}\right.\)
CHÚC BẠN HỌC TỐT......