đặt d là ƯCLN ( 12n + 1 ; 30n + 2 )
Theo bài ra : 12n + 1 \(⋮\) d \(\Rightarrow\)5 . ( 12n + 1 ) \(⋮\) d ( 1 )
30n + 2 \(⋮\) d \(\Rightarrow\) 2 . ( 30n + 2 ) \(⋮\) d ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\) 5 . ( 12n + 1 ) - 2 . ( 30n + 2 ) \(⋮\) d
\(\Rightarrow\) 1 \(⋮\) d
\(\Rightarrow\) d = 1
Mà phân số tối giản thì có ƯCLN của tử số và mẫu số là 1
Vậy \(\dfrac{12n+1}{30n+2}\) là phân số tối giản
Gọi \(d\) là \(UCLN\left(12n+1;30n+2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow60n+5-60n-4⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy phân số \(\dfrac{12n+1}{30n+2}\) tối giản với mọi \(n\in N\)