Tìm các số nguyên x sao cho tích của 2 số hữu tỉ \(-\dfrac{3}{x-1};\dfrac{x-2}{2}\) là một số nguyên
Giải :
Ta có :
\(-\dfrac{3}{x-1}.\dfrac{x-2}{2}=\dfrac{-3\left(x-2\right)}{\left(x-1\right).2}=\dfrac{-3x+6}{2x-2}\)
\(\dfrac{-3x+6}{2x-2}\) là một số nguyên khi \(-3x+6⋮2x-2\)
\(\Leftrightarrow2\left(-3x+6\right)+3\left(2x-2\right)⋮2x-2\\ \Leftrightarrow-6x+12+6x-6⋮2x-2\\ \Leftrightarrow\left(-6x+6x\right)+\left(12-6\right)⋮2x-2\\ \Leftrightarrow6⋮2x-2\\ \Leftrightarrow2x-2\inƯ\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\\ \Leftrightarrow2x\in\left\{3;1;4;0;5;-1;8;-4\right\}\\ \Leftrightarrow x\in\left\{2;0;4;-2\right\}\)