a) ta có : \(sin^2\alpha+cos^2\alpha=1\Leftrightarrow sin^2\alpha=1-cos^2\alpha\)
\(\Leftrightarrow sin^2\alpha=\left(1-cos\alpha\right)\left(1+cos\alpha\right)\Leftrightarrow\dfrac{sin\alpha}{1+cos\alpha}=\dfrac{1-cos\alpha}{sin\alpha}\left(đpcm\right)\)
b) ta có : \(tan^2\alpha-sin^2\alpha=sin^2\alpha\left(\dfrac{1}{cos^2\alpha}-1\right)=sin^2\alpha\left(\dfrac{1-cos^2\alpha}{cos^2\alpha}\right)\)
\(=sin^2\alpha.\dfrac{sin^2\alpha}{cos^2\alpha}=sin^2\alpha.tan^2\alpha\left(đpcm\right)\)