Phân tích đa thức sau thành nhân tử:
a) \(8\cdot\left(x+y+z\right)^3-\left(x+y\right)^3-\left(y+z\right)^3-\left(z-x\right)^3\)
b) \(\left[4abcd+\left(a^2+b^2\right)\cdot\left(c^2+d^2\right)\right]^2-4\cdot\left[cd\cdot\left(a^2+b^2\right)+ab\cdot\left(c^2+d^2\right)\right]^2\)
Các bạn giúp mk giải bài tập này nhá.mk cảm ơn nhìu
\(\left(x-1\right)\cdot\left(x+1\right)\cdot\left(x+2\right)\)
Bài 1: cho \(a,b,c\ge0\) và a+b+c=1. Chứng minh rằng :
a,\(\left(1-a\right)\cdot\left(1-b\right)\cdot\left(1-c\right)\ge8\cdot a\cdot b\cdot c\)
b,\(16\cdot a\cdot b\cdot c\ge a+b\)
c,\(\frac{a}{1+a}+\frac{2\cdot b}{2+b}+\frac{3\cdot c}{3+c}\le\frac{6}{7}\)
Bài 2: cho a,b,c>0 và a.b.c=0 chứng minh rằng:
\(\frac{b\cdot c}{a^2\cdot b+a^2\cdot c}+\frac{a\cdot c}{b^2\cdot c+b^2\cdot a}+\frac{a\cdot b}{c^2\cdot a+c^2\cdot b}\ge\frac{3}{2}\)
Bài 1: Tìm giá trị lớn nhất, giá trị nhỏ nhất của các biểu thức sau:
a/ \(A=\left(x+1\right)\cdot\left(x-2\right)\cdot\left(x-3\right)\cdot\left(x-6\right)\)
b/ \(B=19-6x-9x^2\)
cho a,b khác 0 thỏa mãn a+b
a, \(\frac{a}{b^3-1}+\frac{b}{a^3-1}=\frac{2\cdot\left(a\cdot b-2\right)}{a^2\cdot b^2+3}\)
b, \(\frac{a}{b^3-1}+\frac{b}{a^3-1}=\frac{2\cdot\left(b-a\right)}{a^2\cdot b^2+3}\)
1. Cho \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=\left(a+b-2c\right)^2+\left(b+c-2a\right)^2+\left(a+c-2b\right)^2\)
Cmr: a=b=c
2.Cho x+y=3. Tính giá trị biểu thức:
P= \(3x^2-x+3y^2+2y+6xy-100\)
3. Tính GTNN:
a) A= \(x^2+3x+7\)
b) \(B=x\cdot\left(x-6\right)\)
c) \(C=\left(x-2\right)\cdot\left(x-5\right)\left(x^2-7x-10\right)\)
4. Tìm GTLN a) \(A=11-10x-x^2\)
b) \(B=\left|x-4\right|\cdot\left(2-\left|x-4\right|\right)\)
Giải chi tiết cho mk nha
Cho a,b,c>0 và \(a+b+c\le1\) .Chứng minh rằng:
\(\frac{1}{a^2+2\cdot b\cdot c}+\frac{1}{b^2+2\cdot a\cdot c}+\frac{1}{c^2+2\cdot a\cdot b}\)
Cho \(x+y+z=1\) Chứng minh \(x^3+y^3+z^3-3xyz=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]\)
cho x,y,z là các số thực dương khác 1 và xyz=1. Chứng minh rằng \(\frac{x^2}{\left(x-1\right)^2}+\frac{y^2}{\left(y-1\right)^2}+\frac{z^2}{\left(z-1\right)^2}\ge1\)