Vì \(a>0;b>0;c>0\Rightarrow\dfrac{ab}{c}>0;\dfrac{bc}{a}>0;\dfrac{ac}{b}>0\)
Áp dụng bất đẳng thắng Cosi cho các cặp:
\(\dfrac{ab}{c}+\dfrac{bc}{a}\ge2\sqrt{\dfrac{ab}{c}.\dfrac{bc}{a}}\Leftrightarrow\dfrac{ab}{c}+\dfrac{bc}{a}\ge2b\)
\(\dfrac{bc}{a}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{bc}{a}.\dfrac{ac}{b}}\Leftrightarrow\dfrac{bc}{a}+\dfrac{ac}{b}\ge2c\)
\(\dfrac{ab}{c}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{ab}{c}.\dfrac{ac}{b}}\Leftrightarrow\dfrac{ab}{c}+\dfrac{ac}{b}\ge2a\)
\(\Rightarrow2\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\right)\ge2\left(a+b+c\right)\)
\(\Rightarrow\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\left(dpcm\right)\)
\("="\Leftrightarrow a=b=c\)